
Automatically Detecting API-induced Compatibility Issues in
Android Apps: A Comparative Analysis (Replicability Study)

Pei Liu
Pei.Liu@monash.edu
Monash University

Australia

Yanjie Zhao∗
Yanjie.Zhao@monash.edu

Monash University
Australia

Haipeng Cai
Haipeng.Cai@wsu.edu

Washington State University, Pullman
United States

Mattia Fazzini
mfazzini@umn.edu

University of Minnesota
United States

John Grundy
John.Grundy@monash.edu

Monash University
Australia

Li Li†
Li.Li@monash.edu
Monash University

Australia

ABSTRACT
Fragmentation is a serious problem in the Android ecosystem. This
problem is mainly caused by the fast evolution of the system it-
self and the various customizations independently maintained by
different smartphone manufacturers. Many efforts have attempted
to mitigate its impact via approaches to automatically pinpoint
compatibility issues in Android apps. Unfortunately, at this stage,
it is still unknown if this objective has been fulfilled, and the exist-
ing approaches can indeed be replicated and reliably leveraged to
pinpoint compatibility issues in the wild. We, therefore, propose
to fill this gap by first conducting a literature review within this
topic to identify all the available approaches. Among the nine iden-
tified approaches, we then try our best to reproduce them based
on their original datasets. After that, we go one step further to
empirically compare those approaches against common datasets
with real-world apps containing compatibility issues. Experimental
results show that existing tools can indeed be reproduced, but their
capabilities are quite distinct, as confirmed by the fact that there is
only a small overlap of the results reported by the selected tools.
This evidence suggests that more efforts should be spent by our
community to achieve sound compatibility issues detection.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; • General and reference→ Empirical studies.

KEYWORDS
Android, Android API, Compatibility Issue, Replication

ACM Reference Format:
Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li.
2022. Automatically Detecting API-induced Compatibility Issues in Android
Apps: A Comparative Analysis (Replicability Study). In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’22), July 18–22, 2022, Virtual, South Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3533767.3534407

∗The first and second authors contributed equally to this research.
†Corresponding author.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534407

1 INTRODUCTION
Fragmentation has been a severe problem for the Android ecosys-
tem for years. This refers to the fact that there are a massive number
of Android devices manufactured by different companies running
different Android operating system versions, including both offi-
cial and customized ones. This introduces inconsistencies in that
certain apps can only function properly on devices running certain
Android versions with certain device features (i.e., the apps crash
on other devices), leading to so-called compatibility issues.

Compatibility issues have been considered one of the most se-
vere problems in the Android ecosystem. On the one hand, they
negatively impact the users’ experience, as apps with compatibility
issues may not be able to install on users’ devices or may crash
at runtime even if successfully installed. This results in poor user
experience not only for the app per se but also the whole Android
ecosystem. On the other hand, they also increase the difficulties
of developing apps. The vast number of device-Android version
combinations create many technical complexities for developers
and testers, who must take into account a dizzying number of de-
vices and OS versions, which are non-trivial and yet expensive to
achieve without a proper infrastructure in place.

To address these issues, there has been a great deal of research
in analyzing the compatibility issues of Android apps. In the area
of static analysis, researchers have proposed various automated
approaches to pinpoint one of the most common compatibility
issues: API-induced compatibility issues. For example, Li et al. [35]
have designed and implemented a prototype tool called CiD that
mines the evolution of the official Android framework codebase
to locate evolution-induced incompatible Android APIs, i.e., new
methods introduced in or existing methods being removed from the
latest framework versions.Wei et al. [57] have proposed a prototype
tool called Pivot for characterizing device-specific incompatible
APIs, e.g., APIs that are available for certain devices but not for
others.

However, it is still unclear what the status quo of Android app
compatibility analyses is, what their strengths and weaknesses are,
and to what extent they are able to identify all the possible in-
compatible Android APIs and their induced compatibility issues in
real-world Android apps. Furthermore, it is also unknown to what
extent can we reproduce their experimental results and how well
do the tools compare with each other in terms of detecting compati-
bility issues. Specifically, in this work, we formulate these concerns

https://doi.org/10.1145/3533767.3534407
https://doi.org/10.1145/3533767.3534407

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li

into three research questions that we aim to answer through empiri-
cal evidence and experimental results. The three research questions
are summarized as follows.

• RQ1: What is the status quo of Android compatibility
issues detection approaches?
We propose to answer this research question through a sys-
tematic literature review, aiming to identify the primary
studies relevant to statically detecting Android app compati-
bility issues.
Our review identified nine primary publications that have
proposed automated approaches to characterizing Android
app compatibility issues. After careful analysis we summa-
rize five identified types of API-induced compatibility is-
sues: Evolution-induced (Method), Evolution-induced (Field),
Device-specific (Method), Device-specific (Field), and Over-
ride/Callback. Unfortunately none of the existing approaches
can tackle all five types of API-induced compatibility issues.
The most recent, ACID [40], can only handle three out of
the aforementioned five types.

• RQ2: Canwe replicate the experimental results yielded
by state-of-the-art tools targeting compatibility issue
detection?
Replicability study has been regarded as an essential method
to confirm the reliability of existing research (including both
experiments and datasets) and hence has been considered an
important field in the software engineering community. In
the second research question, we aim to confirm the reliabil-
ity of existing compatibility issues detection approaches by
reproducing their experimental results against their original
datasets.
Our experimental results show that the majority of experi-
mental results could indeed be reproduced. The remaining
small number of inconsistent results (yielded by IctApiFinder
and FicFinder) are mainly caused by unnecessary updates
of the tools (such as dependency fixes) and apps (due to
unrecorded Github version of the apps).

• RQ3: How well do the tools compare with each other?
To answer this question and to make a fair comparison, we
launch the selected tools on two common sets of benchmark
apps: (1) 65 apps used by the authors of selected tools and
(2) 645 apps selected from the AndroidCompass dataset [42].
Experimental results show that (1) compatibility issues de-
tection approaches that achieve their purpose via system-
atically harvested incompatible API rules (such as CiD and
IctApiFinder) can identify significantly more issues than
those having their rules summarized manually, and (2) the
intersection among the results reported by the selected tools
is relatively small.

Open source. The source code and datasets are all made publicly
available in our artifact package via the following link:

https://zenodo.org/record/6516441

2 STATUS QUO UNDERSTANDING (RQ1)
Towards checking how far we are in automating compatibility
issues detection in Android apps, we performed a systematic lit-
erature review to understand the status quo about Android app
compatibility analyses.

2.1 Literature Review
Figure 1 illustrates the working processes of the literature review
summarized based on the guidelines provided by Keele [26] and
Brereton et al. [15], as well as lessons learned from our recent
practices [28, 39, 49, 61].

Keywords
Identification

Repository
Search

Paper
Exclusion

Backward
Snowballing

Primary
Studies

Objectives
Identification

Figure 1: Overview of the literature review process.

Keywords Identification. To understand the status quo of
incompatible app analyses, we resort to a set of keywords to search
for relevant publications in popular repositories. The keywords
we leveraged are essentially made up of two groups (i.e., G1 and
G2). Each group contains several keywords. The search string is
then formed as a combination, i.e., g1 AND g2, where g1 and g2
are formed each as a disjunction of the keywords respectively from
groups G1 and G2.

𝐺1 : 𝑎𝑛𝑑𝑟𝑜𝑖𝑑,𝑚𝑜𝑏𝑖𝑙𝑒, ∗𝑝ℎ𝑜𝑛𝑒∗
𝐺2 : ∗𝑐𝑜𝑚𝑝𝑎𝑡𝑖∗, 𝑑𝑒𝑝𝑟𝑒𝑐𝑎𝑡∗, 𝑖𝑠𝑠𝑢𝑒∗, 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
Repository Search. To focus the search, we applied these key-

words on all the CORE1 A/A* ranked venues. This keeps the review
process lightweight while ensuring that important related works
are not missed. In the software engineering field (i.e., containing
‘software’ keyword in the venue title and falling in the following
fields of research code: 0803 for journals and 4612 for conferences),
as summarized in Table 1, there are 19 venues (5 journals and 14
conferences) ranked as A/A* by CORE. We then go through these
19 venues one by one and apply the aforementioned keywords to
search for relevant publications. Eventually, we were able to locate
44 publications across 13 venues (i.e., there is no relevant paper
identified in 6 of the venues).

Table 1: CORE A/A* ranked software engineering venues.
Type Source Venues

Journals CORE2020 TOSEM, TSE, EMSE, JSS, IST
Conferences CORE2021 ASE, ESEC/FSE, ICSE, EASE, ECSA, IS-

SRE, ESEM, ICSME, MSR, ICSA, SANER,
SEAMS, ICST, ISSTA

Paper Exclusion. As we aimed at collecting as many relevant
papers as possible, we have simply considered all the returned re-
sults. However, not every paper is related to automated Android
app compatibility issue detection. We there go one step further
1https://www.core.edu.au/home

https://zenodo.org/record/6516441
https://www.core.edu.au/home

Automatically Detecting API-induced Compatibility Issues in Android Apps: A Comparative Analysis (Replicability Study) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

to read the abstract (and full content if needed) of the obtained
papers to only retain the closely related ones by applying the fol-
lowing exclusion criteria: (1) Short papers (i.e., less than six pages
in double-column format or 11 pages in single-column format)
are excluded. (2) Papers targeting non-Android mobile devices are
excluded. (3) Papers targeting Android but that do not concern
compatibility issues are excluded. (4) Papers targeting Android
compatibility issues but that do not concern API-induced ones are
excluded (categorized as Other in Figure 4). For example, the work
presented by Ki et al. [27], which proposes an automated testing
framework for Android apps named Mimic for characterizing UI
compatibility issues, is excluded. Another work presented by Wang
et al. [53], which has discussed a type of app signing compatibility
issue introduced by unsupported digest/signature algorithms, is
also excluded. (5) Papers targeting Android compatibility issues but
that do not introduce automated approaches to detect or resolve
them are excluded. For example, Nielebock et al. [42] contribute
an Android compatibility check dataset named AndroidCompass,
which comprises changes to compatibility checks in the version his-
tories of the Android projects. Cai et al. [17] conduct a large-scale
study of compatibility issues based on Android apps developed over
the past eight years to comprehend the symptoms and root causes.
These papers do not introduce a prototype tool to detect compatibil-
ity issues in Android apps and hence are excluded. After applying
these exclusion criteria, there are 9 papers retained that are closely
related to automated incompatible Android API detection.

Backward Snowballing. Based on the papers identified in the
previous steps, we conducted a backward snowballing approach to
ensure that important closely related papers (e.g., with titles not
matching our search string or published outside of the selected 19
venues) are not missed by our lightweight literature review. For
each paper we carefully read the related work part and attempted
to find cited papers that are closely related to our study but have
not yet been included. This process did not help us identify any new
papers, suggesting that the keywords we have selected to search
for relevant publications are indeed relevant ones.

Table 2: Full List of Collected and Examined Papers.
Tool/Reference Year Venue Tool availability

ACID[40] 2021 SANER Available [1]
ACRYL (extension)[48] 2020 EMSE Open Source [2]

ACRYL[47] 2019 MSR Open Source [2]
Pivot[57] 2019 ICSE Available [5]
CiD[35] 2018 ISSTA Open Source [3]

IctApiFinder[22] 2018 ASE Open Source [7]
CIDER[24] 2018 ASE Available [4]

FicFinder (extension)[58] 2018 TSE Available [6]
FicFinder[56] 2016 ASE Available [6]

2.2 Result
In total, our Systematic Literature Review (SLR) search process
identified nine relevant papers (hereinafter referred to as primary
studies, which are listed in the first column of the Table 2. The
nine papers are collected from seven venues with publication dates
ranging from 2016 to 2021 (cf. second and third columns in Table 2).

Figure 2: The word cloud of the abstract text in the selected papers.

The last column describes the availability of these tools. Some
of them are open-sourced, while some of them are published as
executable files on the associated papers’ websites. Figure 2 further
illustrates the word cloud of the abstract texts among the identified
primary publications. Terms such as Android, API, compatibility,
issue, and app remain the most representative ones in the word
cloud, suggesting that the collected primary publications are indeed
relevant to the topic targeted by this work (hence suitable for our
study).

2.3 Status Quo Analysis
After identifying the primary publications, we carefully read their
full papers to understand how each of their automated compatibility
issues detection approaches are implemented. We then summarize
the common working process taken by those approaches to detect
Android compatibility issues.

As shown in Figure 3, the objective is often achieved via two
steps: (1) data-driven approach for harvesting incompatible APIs
and (2) program analysis for detecting unknown compatibility is-
sues. The output of the first step will be a list of incompatible APIs,
which will be taken as input to the second step. With the two typi-
cal steps of working process of compatibility issue detection, we
summarized the collected tools as in Table 3. The second and third
columns describe incompatible APIs collection and issue detection
per se separately. CIDER and FicFinder only support issue detec-
tion while Pivot only focuses on incompatible APIs harvesting.
The remaining tools are working as a whole supporting both APIs
harvesting and issue detection.

Table 3: Working Process Support of Tools.
Tool/Reference API Harvest Issue Detection

ACID[40]
ACRYL (extension)[48]

ACRYL[47]
Pivot[57] %
CiD[35]

IctApiFinder[22]
CIDER[24] %

FicFinder (extension)[58] %

FicFinder[56] %

Among the nine primary publications, as shown in Figure 4, after
carefully reading their full content, we categorize their compatibility
issue detection capabilities into five types of issues. For each of the
considered tools, we further summarize and list its capabilities in

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li

Compatibility Issues
(bug reports, code snippets, commits)

Incompatible
APIs

(1) Data-driven approach for
harvesting incompatible APIs

Program Analysis

Unknown
Compatibility Issues

(2) Program Analysis
for detecting unknown
compatibility issues

Figure 3: The typical working process of detecting Android compatibility issues.

Compatibility issue
detection

API inducedEmpirical study Other
(e.g., UI, signing)

Device-specific
(Method)

Override/
Callback

Evolution-induced
 (Method)

Evolution-induced
(Field)

Device-specific
(Field)

Figure 4: The category of the papers targeting compatibility issues
on Android platform.

Table 4. Columns 2-6 describe the detection of the five different
types of compatibility issues in order as described in Figure 4, which
are further detailed with concrete examples as follows.

1 //Example 1: Evolution-induced(Method)
2 public class MainActivity extends Activity{
3 private TextView mView;
4 protected void onCreate(Bundle bundle) { ...
5 + if(Build.VERSION.SDK_INT >= 24)
6 + wrapper(mView, c, s, null, i);
7 + else
8 mView.startDrag(c, s, null, i);
9 }
10 + private wrapper(View v, ClipData c, ...) {
11 + v.startDragAndDrop(c, s, o, i);
12 + }
13 }
14 //Example 2: Evolution-induced(Field)
15 public static Bitmap getCachedArt(final Context

context,final Song song){
16 ...
17 Options options=new Options();
18 options.inDither=false;
19 options.inPreferredConfig=ARGB_8888;
20 ...
21 }
22 //Example 3: Device-specific(Method)
23 Camera mCamera = Camera.open();
24 Camera.Parameters params = mCamera.getParameters();
25
26 + if (android.os.Build.MODEL.equals("Nexus 4") {
27 + params.setRecordingHint(true);
28 + }
29
30 mCamera.setParameters(params);
31 mCamera.startPreview();
32 //Example 4: Device-specific(Field)
33 private static HttpClient getNewHttpClient() {
34 ...
35 sf.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_-

HOSTNAME_VERIFIER);
36 ...
37 }

38 //Example 5: Override/Callback
39 public void onAttach(Context context) {
40 super.onAttach(context);
41 - mActivity = (BrowserActivity) context;
42 -
43 + attachActivity((BrowserActivity) context);
44 }
45 + public void onAttach(Activity activity) {
46 + super.onAttach(activity);
47 + if (Build.VERSION.SDK_INT < 23) {
48 + attachActivity((BrowserActivity) activity);
49 + }
50 + }
51 + private void attachActivity(BrowserActivity activity

) {
52 + mActivity = activity;
53 +
54 + }

Listing 1: Code examples.

Evolution-induced (Method): The signatures of some public
methods are altered (i.e., removed, newly added, or parameter type
changes, etc.) during the evolution of the framework. Example 1
in Listing 1 demonstrates such an example, for which the code
snippet is initially reported in [22], where statements beginning
with the + signs indicate a possible fix for this incompatibility. The
API startDrag() called on Line 8 is introduced into SDK after level 11.
However, the minSdkVersion of this app is set to 10. Consequently,
if not protected with the “if-else” block, a “NoSuchMethodError”
exception will be thrown, leading to crashes on devices running
SDK version 10.

Evolution-induced (Field): During the evolution of the frame-
work, the signatures of some publicly accessible fields could also be
altered (i.e., removed or newly added). Unfortunately, apart from
[22] and [40], none of the other papers discusses such issues. More-
over, no relevant examples are given in all the research papers. Then
we use an example that we discovered throughout our research.
There is an evolution-induced issue with a field called "Bitmap-
Factory.Options.inDither" at Line 18 of Example 2 in Listing 1. It’s
supported by API Levels 1 through 23, however since API Level
24, it’s been deprecated, creating compatibility issues when an app
sets a target SDK version equal to or greater than 24.

Device-specific (Method): Due to the customization of smart-
phone manufacturers, some APIs only work on some devices but
not on others. Example 3 of Listing 1 demonstrates such an exam-
ple, originally reported by Wei et al. [57]. Only if the result of the
conditional statement for checking the device identifier according
to “Nexus” is true, that is, the corresponding app is indeed running
on “Nexus”, the API setRecordingHint() on Line 27 will be executed.

Automatically Detecting API-induced Compatibility Issues in Android Apps: A Comparative Analysis (Replicability Study) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 4: Examination results of the approaches proposed in the retained primary studies.
Tool/Reference Evolution-induced Evolution-induced Device-specific Device-specific Override/ Systematic Fully automatic2

(Method) (Field) (Method) (Field) Callback (Sound)
ACID[40] 1 % %

ACRYL (extension)[48] % % % % %

ACRYL[47] % % % % %

Pivot[57] % % % %

CiD[35] % % % %

IctApiFinder[22] 1 % % %

CIDER[24] % % % % % %

FicFinder (extension)[58] % % % % %

FicFinder[56] % % % % %
1 Only mentioned but not illustrated in detail.
2 There is no human involvement in the core process, e.g., the learning/knowledge collection phase.

Device-specific (Field): Similar to evolution-induced compat-
ibility issues, the customization of Android frameworks can also
introduce incompatible fields (i.e., exist in some devices but not in
others), referred to as device-specific fields. No code example is pro-
vided in our reviewed primary papers, similar to Evolution-induced
(Field). We then take the example of "<org.apache.http.conn.ssl.SSL-
SocketFactory: org.apache.http.conn.ssl.X509HostnameVerifier AL-
LOW_ALL_HOSTNAME_VERIFIER>", as shown in Example 4 of
Listing 1. According to our analysis results, this field is not sup-
ported by OPPO smartphones in the SDK of API Level 26, which
account for more than 10% of global smartphone shipments [8]. If an
app that uses this field is installed and run on an OPPO smartphone
with SDK version 26, compatibility issues may arise.

Override/Callback: Due to the evolution of the Android frame-
work, some callbacks may have been altered. Here, the callbacks
are methods defined by the framework that could be explicitly over-
ridden2 by client Android developers, and their execution will be
triggered by the framework. The Example 5 in Listing 1 demon-
strates such an example excerpted from [24]. The onAttach(Context)
callback method at Line 39 is introduced from API level 23. This
callback method will not be executed if this code is run on a smart-
phone with an API level lower than 23. Thus it could cause the
mActivity field not to be initialized, and a “NullPointerException”
may be thrown when using it.

The table shows obviously that most of the tools are developed
for detecting compatibility issues induced by the method evolution
of the Android system. For the field evolution-induced compatibil-
ity issues, ACID and IctApiFinder have mentioned the issue in the
corresponding papers but did not explain the issue in detail. Pivot
and FicFinder also considered compatibility issues induced by meth-
ods provided by specific devices, while none of the detection tools
examined compatibility issues resulted from fields carried by spe-
cific devices. For the independent issue induced by the evolution of
callback methods, CIDER is the only approach developed intention-
ally to handle this, while ACID considered both evolution-induced
and this special one. To summarize, unfortunately, none of these
approaches have considered all the identified types of compatibility
issues. The most recent approach, ACID [40], can only handle three
out of the aforementioned five types, leaving device-specific issues

2Actually, all the methods that are declared as public or protected could eventually
be explicitly overridden by client apps. In this work, we take all of such methods into
account and hence will not differentiate (and hence specifically emphasize) if the given
method is a callback.

unaddressed. It is also worth noting that the two approaches, which
have indeed taken evolution-based fields into account, have only
mentioned this capability but do not elaborate further with the
support of experimental evidence.

Furthermore, in column 7 of Table 4, we further summarize
whether the proposed approach involves a systematic approach to
harvest an incompatible API list (hence the results can be consid-
ered complete). As summarized in Table 4, only three approaches
(i.e., ACID, CiD, IctApiFinder) leverage a systematic approach to
harvest incompatible APIs. The majority of considered approaches
only take ad-hoc approaches aiming at detecting as many com-
patibility issues as possible without endeavoring to identify all
the possible compatibility issues, i.e., the compatibility issues are
not discovered following a systematic approach aiming at cover-
ing all the possible cases. As an example, Scalabrino et al. [47]
present an automated compatibility issue detection approach called
ACRYL, which leverages the knowledge collected from changes
implemented in other apps responding to API changes to achieve
its purpose. Such an approach, although implemented in an auto-
mated manner, cannot collect all the possible compatibility issues
lying in the Android ecosystem and thereby can unfortunately yield
false-negative results.

Finally, the last column further highlights whether the proposed
approach itself is fully automated or not. An automated approach
should not involve any manual efforts that may pose difficulties to
replicate. Among the selected nine approaches, six of them do pro-
vide automated ways to identify compatibility issues (i.e., misuse of
incompatible APIs) in real-world Android apps. Three approaches
rely on manual efforts to achieve their objectives, making them not
extensible (at least in an easy way) to detect newly introduced com-
patibility issues. For example, Wei et al. [56, 58] have empirically
studied the fragmentation-induced issues to portray the symptoms
and root causes of compatibility issues and subsequently proposed
a static-analysis tool named FicFinder to detect such compatibil-
ity issues. The major limitation of FicFinder is the requirement of
manual efforts to build the patterns of API/context pairs, which
are summarized from the aforementioned empirical study. Such
manual efforts are expensive to be extended to summarize more
compatibility issues.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li

RQ1 Findings

Our literature review reveals several recent approaches to detect-
ing compatibility issues in Android apps aiming atmitigating the
impact of fragmentation in the Android community. Although
these state-of-the-art approaches are effective in detecting some
issues, they all have weaknesses and limitations. In our analy-
sis, no state-of-the-art approaches are capable of detecting all
five types of compatibility issues that have been identified to
date, and many require considerable manual efforts. There is
thus a need for new approaches to holistically resolve all the
types of compatibility issues, and these approaches should be
systematic and automatic, accounting for all possible issues in
the ecosystem and newly emerging issues.

3 REPLICABILITY STUDY (RQ2)
The second research question aims at checking to what extent can
we replicate the experimental results yielded by the state-of-the-art
tools targeting compatibility issues detection.

3.1 Tool Selection
Ideally, we would like to consider all the tools to perform the repli-
cability study. Among the nine primary studies, there are, in total,
seven tools worth reproducing. ACRYL and FicFinder have respec-
tively been first presented in a conference paper and then extended
to a journal paper. In these two cases, only the tool versions pre-
sented in the latest paper are considered. Among the seven tools,
we decide to exclude Pivot as it does not really involve the actual
detection of compatibility issues in Android apps, as highlighted
in Table 3. For the remaining six detection tools, we download all
of these different tools from their published site and contact the
authors of the tools to make sure if the tools per se and the experi-
mental datasets are the same as they were presented in the original
papers. The developers confirm that IctApiFinder [22] has been
updated due to the evolution of dependencies. We then try to exe-
cute them one-by-one in our local environment to make sure they
can be successfully reproduced. Unfortunately, we have to further
exclude ACID and ACRYL from consideration as these two tools
cannot be successfully executed. We have contacted their authors
for clarification, but until now, we still cannot properly execute
them. Therefore, we conduct the reproducibility study based on the
remaining four tools, which are detailed as follows.

CiD [35] first models the lifecycle of Android APIs by extract-
ing Android APIs from Android framework source code and then
analyses Android Apps including both the primary app code and
extra code. However, it is uncertain whether the Android app has
accessed a problematic Android API or not just by checking if the
app contains an invocation of the problematic Android API as the
problematic Android API can also be protected by SDK version
checkers. Therefore, the authors proposed a path-sensitive inter-
procedural backward data-flow analysis to verify if the problematic
Android APIs are protected with API-level related conditions. A
compatibility issue is identified once the API is not protected by
version condition checks and the API is not supported in the range
designated in AndroidManifest.xml.

IctApiFinder [22] first conducts an extensive empirical study
over 11 consecutive Android versions and approximately 5,000 An-
droid Apps. The authors find that many different APIs are released
between two consecutive Android API releases and thus App de-
velopers or third-party library developers provide additional code
to guarantee the same behaviors on different OS versions. More
importantly, they find that the additional supporting code share
the same pattern that is SDK version check. With the provided SDK
version check, different Android APIs are invoked to run smoothly
on different OS versions. Based on these findings, they propose the
tool by first building the inter-procedural control flow graph (ICFG)
by Soot for Android Apps and then extracting Android APIs from
SDK (android.jar) file as the authors believe that it is not accurate to
extract from the SDK document api-version.xml. With the ICFG, it
transfers the dataflow analysis problem into a reachability problem.
For each Android API in the ICFG, the tool detects if it is supported
in the defined API levels interval in AndroidManifest.xml as there
are different SDK version constraints (conditional SDK version
check to access the Android APIs) in different program points. If
the designated API levels are not supported at a certain point, an
issue is detected.

CIDER [24] focuses on compatibility issues caused by callback
APIs as the evolution of Android frameworks. With the help of
an empirical study, they find that two common types of callback
API evolutions: API reachability change and API behavior mod-
ification can change app control flows and induce compatibility
issues. Thus, they leverage the concept of Callback Control Flow
Graph (CCFG) [60] and propose a graph-based model, Callback
Invocation Protocol Inconsistency Graph (PI-Graph), to capture
the structural invocation protocol inconsistencies to detect call-
back induced compatibility issues (inconsistent app control flows)
when apps running on different API levels. The authors first encode
seven different PI-Graphs related to 24 key Android APIs from their
empirical dataset and then implement the detection tool based on
Soot [52].

FicFinder [58] is actually the first seminal work to better under-
stand fragmentation-induced compatibility issues and detect these
issues via the proposed approach. By conducting empirical study
and investigating real-world compatibility issues, the authors found
that the majority of the issues are induced by the improper use
of Android APIs in a problematic running environment, which is
called issue-triggering context and the context can be expressed in a
context-free grammar. Therefore, the algorithm identifies the issue-
inducing Android APIs as well as their dependencies, analyses
the calling context, and then compares with the modeled issue-
triggering context. To analyze the dependencies issue-inducing API
related, the algorithm carries out an inter-procedural backward
slicing on callsite to acquire the slices of statements on the basis
of program dependence graph [20]. If the triggering context is not
considered before invoking the API, a new issue is reported. To
implement this artefact, the well-known static analysis framework,
Soot [52], is utilized.

Each of the selected tools requires specific configuration. As
the detection result relies on these basic configure parameters, we
investigated the tool document and configuration setup process
and tried to align the configurations between these selected tools
to make sure they do have a similar configuration.

Automatically Detecting API-induced Compatibility Issues in Android Apps: A Comparative Analysis (Replicability Study) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

3.2 Datasets
Recall that, with RQ2, we are interested in evaluating the repli-
cability of the selected tools. We aim to achieve this by running
the tools against their original datasets. We therefore request the
tools’ authors to share their datasets, including mainly the ones
with results manually confirmed by the authors3 and have been
explicitly discussed in their manuscripts (hence can be compared).
To this end, we have eventually selected 65 apps, which are made
up of (1) 20 Android apps for CIDER, seven apps for CiD, eight
apps for IctApiFinder, 30 for FicFinder.4It is worth reminding the
readers that we have to exclude some of the shared apps because
they are no longer available on the web and hence the apps cannot
be downloaded based on the information shared by the authors,
or the shared source code snippets cannot be compiled to Android
apps. Nevertheless, this exclusion of a small number of apps should
not impact the results of the replicability study.

3.3 Result
When we do our replication, CIDER and CiD do have exactly the
same outputs on the original Android Apps while FicFinder and
IctApiFinder have some different outputs regards their original
experimental Apps. We now detail the differences respectively.

IctApiFinder. The artifact was developed along with the paper
in 2018 and was not open-sourced till 2021. With the acquired
eight exact Android Apps, we can successfully run the tool on
all of them. However, 6 of them do have a different number of
issues reported compared with the original paper. Among the six
different apps, the paper in total reported 49 issues regardless of
TP (True Positive) and FP (False Positive), while our experiment
reveals 108 compatibility issues. As we cannot obtain the original
results rather than the reported number of issues, we cannot know
which issues are different compared with the original results. One
reason explaining the differences could be that, as also confirmed
by the authors, the tool has not been maintained during the last
three years. Therefore, there are some dependencies that are not
available anymore, and also, there are some APIs not supported in
the newer updated dependencies. To release the project, the authors
replaced it with newer versions of dependencies and commented
out some non-supported APIs in the project. The authors further
noted that they could not make sure if such updates have bad or
good effects on the final detection results.

FicFinder. The artifact was first published in 2016 and then
was extended in 2018. We can successfully execute the artifact
on all of the Android projects. The paper describes the detected
results in two different categories. The one is compatibility issues
in TP and FP, and the other is Good Practice (GP) meaning already
fixed issues. After we reproduce in our local environment, seven
of them do have different output compared with the original ones
presented in the paper. Among the seven apps, we find that 2 of
them have the same total number of detected results but have a
different number of compatibility issues and good practices, such

3We decide to not request the full dataset leveraged by the authors because it may
involve a very large number of apps that are not convenient to share.
4The FicFinder authors have actually considered 53 Android projects but only 30 of
them can be compiled into Android APKs. Although FicFinder can take either Android
APKs or disassembled class files as input, we will only replicate the capability of
analyzing Android APKs, which are also the input of the other considered tools.

as GadgeBridge [10] was reported one detected issue (regardless of
TP and FP) and one GP but we reproduced with 2 issues detected,
AnkiDroid [9] was reported 4 GP detected but we reproduced with
4 issues. The remaining five apps further have a different total
number of detected results, such as LibreTorrent [11] was revealed
6 GP but we detected with only 3 GP, MozStambler [13] contained
1 issue and one GP but we only detected with 1 issue. The possible
reason behind this is that they did some regular updates on the
artifact as the authors still utilize this one in their research, such as
the case study in their newer work Pivot.

To summarize, as revealed by our study, most of the experimental
results yielded by the selected four tools could be reproduced. The
small number of cases that cannot be reproduced are mainly due to
tools’ updates, either because of lacking maintenance so that we
have to arbitrarily update some dependencies to make it runnable in
practice or intentional evolutions to keep improving its capabilities.
Such updates, either intended or not, have indeed caused difficul-
ties in reproducing the exact original results. Therefore, we argue
that there is a need to always record the artifacts, along with the
experimental datasets such as Android apps including both source
code and bytecode APK files if possible, in permanent sites (e.g.,
Zenodo or Figshare). The artifacts should also be well-configured
in docker-alike containers that can support direct execution of the
tools and hence mitigate unnecessary dependency errors that may
hinder the tools’ replicability.

RQ2 Findings

Most of the experimental results yielded by the four selected
state-of-the-art tools can indeed be reproduced. There are, how-
ever, a small number of non-replicated cases that are mainly
caused by slightly updates of the tools or the evaluated apps.

4 COMPARISON STUDY (RQ3)
The last research question aims to empirically compare the state-
of-the-art tools targeting the detection of compatibility issues in
Android apps. We answer this research question by first present-
ing the experimental setup (including tool selection and datasets)
in Subsections 4.1 and 4.2 and then the experimental results in
Subsection 4.3.

4.1 Tools Selection
Recall that there are only four tools that we can replicate to scan
compatibility issues (as discussed in the previous section). There-
fore, we select the same four tools to achieve this objective in this
work, i.e., comparing these four tools w.r.t. their compatibility issues
detection capabilities.

4.2 Datasets
In this work, we resort to the following two datasets to support the
comparison study.

• Dataset1: The same 65 apps used for the replicability study
as discussed in Section 3.

• Dataset2: 645 Android apps selected from the AndroidCom-
pass dataset [42]. AndroidCompass contains a dataset of git

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li

Table 5: Experimental results obtained based on the 65 apps located
in Dataset1.

App Name Callback-induced Evolution-Induced
CIDER FicFinder IctApiFinder CiD

Tinfoil-Facebook 0 1 1 2
kolabnotes 1 4 5 6
SteamGifts-chocolate-debug 0 6 20 23
OsmAnd 1 3 7 44
iFixitAndroid 0 7 58 218
Simple-Solitaire 1 0 1 10
Anki-Android 0 6 150 86
login-sample-debug 4 0 2 3
ooniprobe-android-1.3.1-debug 1 0 4 38
APICompatibility_Inheritance 0 0 2 3
APICompatibility_Varargs 0 0 2 2
SurvivalManual-4.1-debug 0 2 1 15
Calendula 0 15 29 63
libretorrent 3 1 13 59
APICompatibility_Protection2 0 1 1 0
StreetComplete 0 2 7 5
red-moon 0 0 13 21
padland 1 0 13 4
duckduckgo-0.6.0-release 1 0 1 2
transdroid 0 1 214 37
materialistic-hacker-news 0 1 32 36
materialfbook 0 1 15 38
ownCloud 0 2 66 181
AndStatus 0 2 43 27
RedReader 0 1 30 7
opentasks-1.1.8.2 0 24 14 51
APICompatibility_Basic 0 0 1 1
Gadgetbridge 0 2 21 35
Total 13 82 766 1,017

commits related to Android compatibility checks (including
evolution-induced, device-specific, and override/callback-
related ones), which are originally harvested from 1,375
open-source Android projects on Github. Some git commits
contain compatibility issue fixes (e.g., adding compatibility
checks for APIs that are not protected initially), while others
do not (e.g., adding new Java files that include compatibility
checks). In this work, we are only interested in the former
ones as based on which we could locate problematic app
versions containing actual compatibility issues (i.e., the apps
compiled based on their immediate previous commit). We
could further collect the actual compatibility issues based on
the compatibility checks added in the fix commits for each
of the compiled apps. This study will leverage this informa-
tion as partial ground truth to support the comparison study.
Unfortunately, several app projects are no longer available
on Github, while some others cannot be easily complied into
APKs (e.g., due to missing library dependencies), we have to
exclude them. Eventually, we were able to collect 645 apps
to fulfill this dataset.

4.3 Result
Results on Dataset1. We first launch the selected tools to analyze
the apps in Dataset1. Unfortunately, 37 apps cannot be handled
successfully by both IctApiFinder and CiD (i.e., 24 and 15 failures,
respectively). The corresponding error messages indicate that the
failures are mainly raised by Soot, the underlying static analysis
framework leveraged by these two tools. This problem has been
discussed by the authors in their article as a potential threat to
validity. It is also a well-known problem when performing static
analysis on top of Soot.

48884 63

IctApiFinder CiD

Figure 5: Venn diagram of incompatible APIs utilized in IctApiFinder
and CiD.

For the remaining 28 successfully analyzed apps, Table 5 presents
the detection results. CIDER, different from the other three detec-
tion tools, was developed for callback-induced compatibility issues.
Among the 28 apps, there are only 8 apps being reported to include
callback-induced issues. The reason behind this small number could
be explained by the fact that the tool only leverages seven manually
summarized rules to detect such issues. Such a manual process may
not be able to include all the different situations and hence may
lead to incomplete results. Similarly, FicFinder, which leverages 20
manually summarized incompatible APIs, reports only 82 compati-
bility issues, which are also significantly fewer results compared
with the remaining two tools that have leveraged systematic ap-
proaches to harvest incompatible APIs (as indicated in Table 3).
This experimental result further confirms that it is essential to in-
vent systematic approaches to harvest incompatible APIs so as to
support automated compatibility issues detection in Android apps.

While both IctApiFinder and CiD yield significantly more results
than FicFinder and they do take systematic approaches to collect
incompatible APIs, their results are quite different. Among the 28
apps successfully analyzed by both of these two tools, IctApiFinder
and CiD respectively yields in total 766 and 1,017 issues, for which
only 52 reported by both of them. This experimental result is quite
surprising as we would have expected that IctApiFinder and CiD
would have much more overlap in terms of their detected com-
patibility issues. We therefore go one step deeper to investigate
why these two tools yield quite different results, i.e., being able to
locate a quite number of compatibility issues while also missing
many of them reported by the other tool. We look at the number
of distinct incompatible APIs detected by these two tools. The 766
and 1,017 compatibility issues reported by IctApiFinder and CiD
are essentially caused by 147 and 551 incompatible APIs, respec-
tively. As highlighted in Figure 5, the intersection between these
two incompatible APIs sets is quite small (i.e., only 63 out of 551
incompatible APIs considered by CiD are also taken into account by
IctApiFinder). One reason causing this difference is that different
time framework of Android framework versions are considered
(e.g., the incompatible APIs collected by IctApiFinder are from 4
to 27, while CiD is from API 1 to 25). Subsequently, the common
compatibility issues reported by both of these two tools will be
small as well.

Results on Dataset2. We then launch the selected tools on
Dataset2, which contains a large number of real-world Android apps
selected from the AndroidCompass compatibility checks dataset.

Automatically Detecting API-induced Compatibility Issues in Android Apps: A Comparative Analysis (Replicability Study) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

0

50

100

150

200

CIDER
FicFinder

IctApiFinder
CiD

#.
 d

et
ec

te
d

is
su

es

Figure 6: Compatibility issues detected by different detection tools
against Dataset2.

Unfortunately, over half the apps are excluded from the dataset
as they cannot be successfully analyzed by all the selected tools.
Among the 277 remaining apps, CIDER, FicFinder, IctApiFinder, and
CID have reported 12, 277, 5,009, and 27,874 compatibility issues,
respectively. Figure 6 further illustrates the distribution of detected
compatibility issues in real-world Android Apps. Clearly, CiD yields
more issues than the other tools, followed by IctApiFinder and then
FicFinder. CIDER reports the least number of compatibility issues.
These differences are also significant as confirmed by a Mann-
Whitney-Wilcoxon (MWW) test at a significant level5 at 0.001.

Observant readers may have noticed that this experiment, al-
though with a large number of apps, supports the same findings
discussed previously. First, there is a strong need to invent system-
atic approaches to harvest compatibility issues detection rules (i.e.,
identifying incompatible APIs). As shown in Figure 6, the number
of issues reported by CIDER and FicFinder (with manually summa-
rized rules) is significantly less than that achieved by IctApiFinder
and CiD (with systematically harvested rules). Furthermore, the
fact that the intersection between the results yielded by the selected
tools is quite small suggests that existing tools could be leveraged to
complement each other. This result further shows that there is still
a gap in the community to implement promising approaches to flag
compatibility issues in Android apps, i.e., the capability of detecting
compatibility issues has not been mature. Last but not the least,
we believe that it is not exactly fair to directly compare existing
tools targeting compatibility issues detection in Android apps as the
evolution of the Android ecosystem is very fast. Tools developed
at different times will likely collect a different set of incompatible
APIs (e.g., the incompatible APIs collected by IctApiFinder are from
4 to 27, while CiD is from API 1 to 25), which subsequently will
lead to a different set of compatibility issues. Therefore, we argue
that, when comparing compatibility issues detection tools, there is
a strong need to make sure that the underlying set of incompatible
APIs is kept the same, which is however non-trivial to achieve as
existing tools may not always be made open-source.

5Given a significance level 𝛼 = 0.001, if p-value < 𝛼 , there is one chance in a thousand
that the difference between the datasets is due to a coincidence.

C
iD

C
iD

n

0 50 100 150
#. detected issues

Figure 7: Comparison between original CiD and API life-cycle ex-
tended CiD.

RQ3 Findings

Comparing the selected four tools on the same datasets, CiD
is able to yield more compatibility issues than the other tools,
followed by IctApiFinder, and then FicFinder. Their results are
however not well overlapped, suggesting the existing tools are
complementary to each other and yet still have limitations to
achieve sound compatibility issues detection. Furthermore, the
fact that CiD and IctApiFinder can yield significantly more
results than FicFinder and CIDER suggests that it is essential to
leverage systematic approaches to mine incompatible APIs so
as to support the detection of compatibility issues.

5 DISCUSSION
We discuss the key implications of this research, including priori-
tized research directions that should be conducted for mitigating
the fragmentation impact on the Android community. Our litera-
ture review and experimental findings raise a number of issues and
opportunities for research and practice communities.

5.1 Implication
Continuous Improvement to Adapt to the Fast Evolution of
the Mobile Ecosystem. With the rapid evolution of the open-
source Android Operating System, detection tool maintainers need
to take the new system releases into account. Besides, many device
vendors always release lots of different models as their own publish
step. To detect the newly introduced compatibility issues, these
tools need to be refined once new version system released and new
device induced. However, these tools are not self-adaptive. They all
need to be carefully adjusted.

As an example towards demonstrating the necessity to continu-
ously update the tools to adapt to the fast evolution of the mobile
ecosystem, we spend additional efforts to update the open-source
CiD project by extending its supported API ranges from 1-25 to
1-31 (Android12 with API level 31 is the latest Android release).
The updated version is referred to as CiD𝑛 . We then launch CiD𝑛 to
analyze the apps in Dataset2. Figure 7 summarizes the experimental
results, along with that achieved by the original CiD. Clearly, CiD’s
performance has indeed been improved after adapting to the latest
release of Android frameworks. This evidence strongly suggests
the necessity to keep adapting compatibility issues detection tools
to support the latest changes of the mobile ecosystem. We therefore
argue that different automation approaches are needed to facilitate
the extraction of Android APIs in order to automate issue detection
when new Android versions and devices are released.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li

ExtractingComplete IncompatibleAPIs:The state-of-the-art
tools all heavily rely on summarized incompatible APIs regardless
of whether they are manually summarized or systematically col-
lected. However, tools we analyzed all have their own approach to
collect incompatible APIs, which not only sets obstacles to have
a fair comparison but also undermines capacities of the detection
tools. Therefore, an effective approach to extract a complete list of
incompatible APIs is necessary.

Integrating Dynamic Testing to Verify Compatibility Is-
sues: Currently, most research approaches proposed to tackle com-
patibility issues in Android apps rely on static analysis. However,
efficient, static analysis is also known to yield many false-positive
results. We argue that dynamic testing approaches should also be
included to supplement the analysis of static analysis approaches
(e.g., to practically verify the results yielded by static analysis ap-
proaches). It is nevertheless non-trivial to build a comprehensive
dynamic testing environment for checking compatibility issues, as
it needs to include all publicly available Android devices, for which
the number is also continuously changing. To cope with this, we
argue that crowdsourced mobile app testing could be leveraged,
especially in lightweight mode directly supported by the Android
system, to pinpoint and subsequently mitigate compatibility issues.

Characterizing Semantics-changing Incompatible APIs: In
addition to the five types of incompatible APIs discussed in this
work, which are all related to the existence of the APIs, there is
another type of API-induced compatibility issue that goes beyond
APIs’ existence to concern their semantic changes. Given an API
with semantic changes, even if its signature persisted in the frame-
work, the client apps accessed into it could also be impacted. Such
semantics changes will be propagated to the client app, which may
not have yet adapted to such changes. As recently revealed by Liu
et al. [38], there are indeed a number of Android APIs involving
semantic changes during the evolution of the framework. However,
such semantic changes are hard to be automatically identified, so
as to the corresponding compatibility issues. Therefore, we argue
that our community should also pay special attention to semantics-
changed incompatible APIs and invent advanced approaches to
mitigate them, either by carefully (1) documenting them if it is
unavoidable to change the semantics of existing APIs or (2) testing
the client apps to identify and fix such issues before publishing the
apps to end-users.

Supporting Automated Compatibility Issue Repair: Finally,
after API compatibility issues are identified, we argue that auto-
mated approaches are also needed to help developers to fix them.
This is especially true for such apps that have already been released
to the public, as users may not even be able to install the apps or
face runtime crashes even if the apps can be successfully installed.
Automated repairing approaches could keep users from encounter-
ing such unfavorable situations, meanwhile helping app developers
fix the issues for better future releases.

5.2 Threats to validity
As it is the chase of most empirical studies, there are threats to
validity associated with the results we presented. One threat is
the configuration of all our selected detection tools. All selected
tools are implemented on top of the Soot static analysis framework,

which also requires Android frameworks as an input parameter.
However, the version of the Soot and Android framework may be
still different because we cannot know the exact versions leveraged
in every detection tool. To mitigate this threat, we meticulously
align the configurations among them as much as we can to provide
an approximately same environment. Another threat depends on
the approach to harvest incompatible APIs, especially between
IctApiFinder and CiD. IctApiFinder extracts APIs from Android
framework API levels 4 to 27 based on published artifacts, while
CiD acquires from the source code of Android framework API levels
1 to 25 on their own approach. Different ranges of API levels and
the trade-offs made while pinpointing incompatible APIs would
unavoidably bring in discrepancies, which may result in different
performances even on the same dataset. In the future, we will try
to align the extraction approach to achieve a fair comparison.

6 RELATEDWORK
In recent years, compatibility issues have been a hot topic in the
Android community [19, 25, 29, 45, 47, 53, 62]. Since the apps are
inseparable from the official Android APIs, it is essential to probe
compatibility issues caused by the evolution of the Android operat-
ing systems.

Besides the tools we investigated in the paper, there are many
other works handling various API issues. For example, Li et al. [36,
37] build a prototype tool, CDA, to characterize deprecated Android
APIs by mining the evolution of the Android framework. Similar
method has also been applied to characterize inaccessible APIs [32]
and inconsistent release time of Android apps [31]. Scalabrino et
al. [47] introduce ACRYL, learning from the change histories of
other apps in response to API evolution. It can identify compatibil-
ity issues, yet in addition suggest repairs. The authors empirically
compare ACRYL and CiD and track down no obvious winner, but
the results indicate the possibility of combining the two methods
in the future. Later on, they extend their work [48] by enlarging
the datasets and adding some interviews and details, but there is
no obvious improvement in terms of the detection approach. Xia
et al. [59] conduct a large-scale study on the practice of handling
OS-induced API compatibility issues and their solutions, and they
propose a tool named RAPID to ascertain whether a compatibility
issue has been resolved. Mobilio et al. [41] acquaint a tool named
FILO which can assist Android designers in tackling backward
compatibility issues caused by API upgrades. FILO is designed to
recognize app methods that need to be altered to adapt to the API
changes and report symptoms observed in failed executions to fa-
cilitate repair. Mahmud et al. [40] propose ACID, an approach to
detecting compatibility issues caused by API evolution. Experimen-
tal results demonstrate that ACID is more accurate and faster in
detecting compatibility issues than previous techniques. The fly
in the ointment is that ACID only considers the changes in An-
droid method invocations and callbacks brought about by evolution
rather than considering device-specific compatibility issues.

To detect such compatibility issues, different information flows
are needed to identify by constructing inter- and intra-procedural
control flow graph [34]. Qiu et al. [43] did an extensive compar-
ison among three most prominent static analysis tools including

Automatically Detecting API-induced Compatibility Issues in Android Apps: A Comparative Analysis (Replicability Study) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

FlowDroid [14] combined with IccTA [30], DroidRA [33, 51], Aman-
Droid [54, 55], and DroidSafe [21]. They spotted out the advantages
and shortcomings of each tools and revealed that it is important to
provide detailed configuration and setup environment specification
to guarantee the replicability of experiments.

In non-Android communities, research on compatibility issues is
also pervasive [16, 23, 44, 46, 63]. Sawant et al. [46] analyze clients
of popular third-party Java APIs and the JDK API and publicise
a large dataset; also, they look into the connection between the
client’s response patterns and the deprecation policy the related
API adopted. Chen et al. [18] present an approach named DeBBI,
which leverages the test suites of various client projects to detect
library behavioral backward incompatibilities.

To compare different tools developed for the same issue, Su et.
al. [50] did an extensive comparison and proposed a new bench-
mark called Themis facilitating our research community for auto-
mated GUI testing. They collected critical bugs reported on Github
with respect to their bug label revealing the severity and did ex-
periments with five state-of-the-art testing tools integrated with
Monkey [12], and then gave out qualitative and quantitative analy-
sis result. They successfully identified 5 different challenges that
these tools still face, such as the reachability of deep use scenarios,
test input generation etc., and shed lights on future research based
on their systematic analysis results, such as integrating heuristics
to improve the capability to spot GUI bugs.

7 CONCLUSION
In this paper, we have conducted a literature review on research
works targeting Android app compatibility issues. Based on this
review, we are able to identify nine state-of-the-art works proposed
to detect compatibility issues in Android apps and among which
we have summarized five types of incompatible issues reported by
our fellow researchers. We then confirm the reproducibility of the
selected tools based on a replication study by running the tools
against their original datasets. We further go one step deeper to
conduct an empirical comparison study among the selected tools.
Our findings indicate that compatibility issues detection is still at an
early stage, which requires attention from the community to keep
improving so as to achieve sound compatibility issues detection.

ACKNOWLEDGEMENTS
This work is supported by ARC Laureate Fellowship FL190100035,
ARC Discovery Early Career Researcher Award (DECRA) project
DE200100016, and a Discovery project DP200100020.

REFERENCES
[1] 2021. ACID. https://github.com/TSUMahmud/acid.
[2] 2021. ACRyL. https://github.com/intersimone999/acryl.
[3] 2021. CiD. https://github.com/lilicoding/CiD.
[4] 2021. CIDER. https://github.com/cideranalyzer/cideranalyzer.github.io.
[5] 2021. Download Pivot. https://ficissuepivot.github.io/Pivot/.
[6] 2021. FicFinder Project Homepage. http://sccpu2.cse.ust.hk/ficfinder/.
[7] 2021. IctApiFinder. https://github.com/DongjieHe/IctApiFinder.
[8] 2021. OPPO’s share of smartphone shipments worldwide. https://www.statista.

com/statistics/628545/global-market-share-held-by-oppo-smartphones/
[9] 2022. AnkiDroid. https://github.com/ankidroid/Anki-Android.
[10] 2022. Gadgetbridge. https://github.com/Freeyourgadget/Gadgetbridge.
[11] 2022. LibreTorrent. https://github.com/proninyaroslav/libretorrent.
[12] 2022. Monkey. http://developer.android.com/tools/help/monkey.html.
[13] 2022. MozStumbler. https://github.com/mozilla/MozStumbler.

[14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[15] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mo-
hamed Khalil. 2007. Lessons from applying the systematic literature review
process within the software engineering domain. Journal of systems and software
80, 4 (2007), 571–583.

[16] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2016. Do
developers deprecate apis with replacement messages? a large-scale analysis on
java systems. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. IEEE, 360–369.

[17] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A Large-Scale Study of
Application Incompatibilities in Android. In The 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019).

[18] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Tam-
ing behavioral backward incompatibilities via cross-project testing and analysis.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering. 112–124.

[19] Bruce Collie, Philip Ginsbach, Jackson Woodruff, Ajitha Rajan, and Michael
O’Boyle. 2020. M3: Semantic API Migrations. arXiv preprint arXiv:2008.12118
(2020).

[20] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[21] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of android applications in
droidsafe.. In NDSS, Vol. 15. 110.

[22] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.
2018. Understanding and detecting evolution-induced compatibility issues in
Android apps. In 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 167–177.

[23] André Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,
and Marco Tulio Valente. 2015. How do developers react to API evolution?
The Pharo ecosystem case. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 251–260.

[24] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Under-
standing and detecting callback compatibility issues for android applications. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 532–542.

[25] Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, and
David Lo. 2019. Semantic Patches for Java Program Transformation (Experience
Report). In 33rd European Conference on Object-Oriented Programming (ECOOP
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[26] Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews in
software engineering. Technical Report. Citeseer.

[27] Taeyeon Ki, Chang Min Park, Karthik Dantu, Steven Y Ko, and Lukasz Ziarek.
2019. Mimic: UI compatibility testing system for Android apps. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 246–256.

[28] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
2018. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Transactions on Reliability (2018).

[29] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 years of automated evo-
lution in the Linux kernel. In 2018 {USENIX} Annual Technical Conference
({USENIX}{𝐴𝑇𝐶} 18). 601–614.

[30] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280–291.

[31] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2018. MoonlightBox: Mining
Android API Histories for Uncovering Release-time Inconsistencies. In The 29th
IEEE International Symposium on Software Reliability Engineering (ISSRE 2018).

[32] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Access-
ing Inaccessible Android APIs: An Empirical Study. In The 32nd International
Conference on Software Maintenance and Evolution (ICSME 2016).

[33] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
Taming Reflection to Support Whole-Program Analysis of Android Apps. In The
2016 International Symposium on Software Testing and Analysis (ISSTA 2016).

[34] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static Analysis
of Android Apps: A Systematic Literature Review. Information and Software
Technology (2017).

[35] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:
Automating the detection of api-related compatibility issues in android apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–163.

https://github.com/TSUMahmud/acid
https://github.com/intersimone999/acryl
https://github.com/lilicoding/CiD
https://github.com/cideranalyzer/cideranalyzer.github.io
https://ficissuepivot.github.io/Pivot/
http://sccpu2.cse.ust.hk/ficfinder/
https://github.com/DongjieHe/IctApiFinder
https://www.statista.com/statistics/628545/global-market-share-held-by-oppo-smartphones/
https://www.statista.com/statistics/628545/global-market-share-held-by-oppo-smartphones/
https://github.com/ankidroid/Anki-Android
https://github.com/Freeyourgadget/Gadgetbridge
https://github.com/proninyaroslav/libretorrent
http://developer.android.com/tools/help/monkey.html
https://github.com/mozilla/MozStumbler

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li

[36] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising deprecated android apis. In Proceedings of the 15th International
Conference on Mining Software Repositories. 254–264.

[37] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
Cda: Characterising deprecated android apis. Empirical Software Engineering
(2020), 1–41.

[38] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. 2021. Identifying
and Characterizing Silently-Evolved Methods in the Android API. In The 43rd
ACM/IEEE International Conference on Software Engineering, SEIP Track (ICSE-SEIP
2021).

[39] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2021. Deep learning
for android malware defenses: a systematic literature review. arXiv preprint
arXiv:2103.05292 (2021).

[40] Tarek Mahmud, Meiru Che, and Guowei Yang. 2021. Android Compatibility
Issue Detection Using API Differences. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 480–490.

[41] Marco Mobilio, Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani. 2020.
FILO: FIx-LOcus localization for backward incompatibilities caused by Android
framework upgrades. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. 1292–1296.

[42] Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ortmeier. 2021. An-
droidCompass: A Dataset of Android Compatibility Checks in Code Repositories.
arXiv preprint arXiv:2103.09620 (2021).

[43] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the analyzers: Flow-
droid/iccta, amandroid, and droidsafe. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 176–186.

[44] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers
react to API deprecation? The case of a Smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. 1–11.

[45] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 404–415.

[46] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2018. On the
reaction to deprecation of clients of 4+ 1 popular Java APIs and the JDK. Empirical
Software Engineering 23, 4 (2018), 2158–2197.

[47] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Michele Lanza, and
Rocco Oliveto. 2019. Data-driven solutions to detect api compatibility issues in
android: an empirical study. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 288–298.

[48] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Valentina Piantadosi,
Michele Lanza, and Rocco Oliveto. 2020. API compatibility issues in Android:
Causes and effectiveness of data-driven detection techniques. Empirical Software
Engineering 25, 6 (2020), 5006–5046.

[49] Md. Shamsujjoha, John Grundy, Li Li, Hourieh Khalajzadeh, and Qinghua Lu. 2021.
Developing Mobile Applications via Model Driven Development: A Systematic
Literature Review. Information and Software Technology (IST) (2021).

[50] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking automated GUI
testing for Android against real-world bugs. In Proceedings of the 29th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 119–130.

[51] Xiaoyu Sun, Li Li, Tegawendé F Bissyandé, Jacques Klein, Damien Octeau, and
John Grundy. 2020. Taming Reflection: An Essential Step Towards Whole-
Program Analysis of Android Apps. ACM Transactions on Software Engineering
and Methodology (TOSEM) (2020).

[52] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[53] Haoyu Wang, Hongxuan Liu, Xusheng Xiao, Guozhu Meng, and Yao Guo. 2019.
Characterizing Android app signing issues. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 280–292.

[54] Fengguo Wei, Sankardas Roy, and Xinming Ou. 2014. Amandroid: A precise and
general inter-component data flow analysis framework for security vetting of
android apps. In Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security. 1329–1341.

[55] Fengguo Wei, Sankardas Roy, and Xinming Ou. 2018. Amandroid: A precise
and general inter-component data flow analysis framework for security vetting
of android apps. ACM Transactions on Privacy and Security (TOPS) 21, 3 (2018),
1–32.

[56] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: Characterizing and detecting compatibility issues for Android apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 226–237.

[57] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2019. Pivot: learning api-device
correlations to facilitate android compatibility issue detection. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 878–888.

[58] Lili Wei, Yepang Liu, Shing-Chi Cheung, Huaxun Huang, Xuan Lu, and Xuanzhe
Liu. 2018. Understanding and detecting fragmentation-induced compatibility
issues for android apps. IEEE Transactions on Software Engineering 46, 11 (2018),
1176–1199.

[59] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, YangWang, Xiangyu Zhang,
Shuaishuai Cui, Geng Hong, Xiaohan Zhang, Min Yang, et al. 2020. How Android
developers handle evolution-induced API compatibility issues: a large-scale study.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 886–898.

[60] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 89–99.

[61] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang
Liu. 2021. Research on Third-Party Libraries in Android Apps: A Taxonomy and
Systematic Literature Review. IEEE Transactions on Software Engineering (2021).

[62] Yanjie Zhao, Li Li, Kui Liu, and John Grundy. 2022. Towards Automatically Re-
pairing Compatibility Issues in Published Android Apps. In The 44th International
Conference on Software Engineering (ICSE 2022).

[63] Jing Zhou and Robert JWalker. 2016. API deprecation: a retrospective analysis and
detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
266–277.

	Abstract
	1 Introduction
	2 Status Quo Understanding (RQ1)
	2.1 Literature Review
	2.2 Result
	2.3 Status Quo Analysis

	3 Replicability Study (RQ2)
	3.1 Tool Selection
	3.2 Datasets
	3.3 Result

	4 Comparison Study (RQ3)
	4.1 Tools Selection
	4.2 Datasets
	4.3 Result

	5 Discussion
	5.1 Implication
	5.2 Threats to validity

	6 Related Work
	7 Conclusion
	References

