
CiD4HMOS: A Solution to HarmonyOS
Compatibility Issues

Tianzhi Ma1, Yanjie Zhao2, Li Li3, Liang Liu1,*

1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
tianzhima@nuaa.edu.cn, liangliu@nuaa.edu.cn

2Faculty of Information Technology, Monash University, Melbourne, Australia
Yanjie.Zhao@monash.edu

3School of Software, Beihang University, Beijing, China
lilicoding@ieee.org

*Corresponding author: Liang Liu (email: liangliu@nuaa.edu.cn)

Abstract—HarmonyOS is an operating system boasting a
substantial global user base and provides multiple versions of
its SDK. Various open-source applications continue to utilize
older versions, leading to compatibility issues arising from system
constraints. These prevalent issues can substantially affect the
user experience. Although numerous solutions have been sug-
gested for addressing compatibility issues in Android, the subject
remains largely unexplored within the context of HarmonyOS.
To bridge this gap, we investigate the evolution of APIs in
HarmonyOS to pinpoint those potentially causing compatibility
issues. Based on these insights, we implement CiD4HMOS, a tool
designed to detect and categorize compatibility issues in Har-
monyOS. We evaluate the feasibility of CiD4HMOS with open-
source apps and subsequently apply it to commercially released
apps, highlighting its effectiveness in accurately identifying Har-
monyOS compatibility issues. The experimental results uncover
that CiD4HMOS is effective in detecting compatibility issues
in HarmonyOS apps, achieving an accuracy rate of 86.8% in
open-source apps. And, developers of commercially released apps
have significantly endorsed our reports. Our research emphasizes
the necessity of continuous exploration into compatibility issues
within HarmonyOS, underlining the significant role tools like
CiD4HMOS play in enhancing the overall user experience.

Index Terms—HarmonyOS, Framework Base, Compatibility
Issue

I. INTRODUCTION

The Software Development Kit (SDK) serves as the fun-
damental component of mobile applications, enabling them
to interact with the mobile phone’s operating system (OS)
and hardware [1]. It is comprised of APIs, development
documentation, and simulated runtime environments provided
by the respective mobile phone operating system developers.
As the performance of mobile phone hardware improves, so
does the number of features that can be utilized on a mobile
phone [2]. This means that a limited number of OS SDK
versions are insufficient for developers to fully harness the
performance and capabilities of mobile phones. Consequently,
mobile phone system providers periodically release new SDK
versions to cater to developers seeking to utilize the full
potential of a device’s features and performance [3]. Each
SDK update adjusts or removes certain APIs that have become
obsolete while introducing new APIs to support emerging

functionalities. Invoking these APIs on devices with incom-
patible SDK versions could cause compatibility issues [4].
Specifically, mobile phone users may face issues where some
apps cannot be installed on their devices; or even if installed,
apps may crash when specific functions are accessed, leading
to an unsatisfactory user experience.

In the case of Android OS, a mechanism exists for develop-
ers to specify the range of SDK versions that apps support to
tackle this issue [5]. Nonetheless, given the extensive number
of APIs called by each app, it could be a daunting task for
developers to determine exactly which SDK version range is
appropriate for their app, so runtime crashes of Android apps
due to compatibility issues are still common [6]. Therefore, for
mobile systems with multiple SDK versions, detecting such
incompatibilities to enhance user experience is essential. For-
tunately, different solutions have been investigated to automat-
ically identify compatibility issues in Android apps [7]–[17].
For example, Wei et al. [18] manually extracted and modeled
a set of API invocations potentially leading to compatibility
issues. They further introduced FicFinder, an automated ap-
proach for detecting compatibility issues arising from Android
fragmentation; however, it still necessitated characterization
with human endeavor. Huang et al. [19] proposed CIDER
to detect callback API compatibility issues by constructing
protocol inconsistency graphs (PI-Graphs) to capture control
flow inconsistencies from API evolution. Still, the manual
construction of PI-Graphs required human collaboration for
each SDK version update, and CIDER’s focus was limited to
callback APIs. Li et al. [20] introduced a generic approach
known as CiD, which identifies API-related compatibility
issues by systematically modeling the lifecycle of Android
APIs gathered from the official historical evolution of the
Android framework.

It is not only Android that is suffering. HarmonyOS [21] is
an operating system developed by Huawei, a Chinese multi-
national technology company. Introduced in August 2019,
HarmonyOS was initially designed for Internet of Things (IoT)
devices. HarmonyOS 2.0 was initially introduced as a Beta
version at the Huawei Developer Conference in September
2020, and later officially launched in June 2021. With the



release of HarmonyOS 2.0, the operating system expanded its
scope to include smartphones and other smart devices [22].
Huawei has devoted a lot of effort to the development of
HarmonyOS, resulting in the release of 8 major SDK versions,
where changes to some APIs are unavoidable during SDK
version updates. Mirroring the widespread compatibility issues
in Android apps [23], HarmonyOS apps face similar obstacles.
Similar to Android, HarmonyOS allows developers to specify
the system versions their apps can normally run on to avoid
compatibility issues. For each app, developers can set the Com-
patible (equivalent to minSdkVersion in Android) and Compile
(equivalent to targetSdkVersion in Android) parameters to in-
form users or app markets about the supported SDK versions.
However, previous research into Android compatibility issues
has shown that many developers lack precise control over
their apps’ version range and may not react to SDK version
updates [24], [25]. If the Compile set by the developer is higher
than the actual Compile SDK version, it could cause backward
compatibility issues; if the Compatible is lower than the actual
minimal SDK version, it can result in forward compatibility
issues. A poor user experience could ensue if an app cannot
run on an operating system with an adapted SDK version.
Therefore, an effective approach to detect the appropriate SDK
scope is also essential for HarmonyOS app developers. Unfor-
tunately, while the Android community has some experience
addressing compatibility issues [20], [26], HarmonyOS, being
a brand-new system, everything is unexplored territory.

To fill this gap, in this work, we propose an ap-
proach called CiD4HMOS (Compatibility issues Detector
For HarmonyOS, which for the first time automates the
detection of API-related compatibility issues in HarmonyOS
apps. CiD4HMOS automatically extracts APIs from each SDK
version, and then models and characterizes the correspond-
ing lifecycle for each API. This allows for the detection
of potential compatibility issues arising from the APIs in-
voked in individual apps. The design and implementation of
CiD4HMOS draw inspiration from CiD [20], as CiD is a well-
known and well-performing tool in the field of Android com-
patibility issue detection [27]. Experimental results, derived
from a dataset consisting of 524 HarmonyOS apps gathered
from Gitee [28] and Huawei AppGallery [29], demonstrate
CiD4HMOS’s effectiveness in identifying compatibility issues
within HarmonyOS apps, with a total of 325 backward and
15 forward compatibility issues detected from 58 apps. Going
a step further, we perform an in-depth analysis of the de-
tected compatibility issues based on our experimental findings,
categorizing them and subsequently offering corresponding
repair suggestions. We have communicated these reports with
30 developers responsible for the 58 apps with compatibility
issues, receiving 8 positive feedback responses. While 20
developers did not respond or informed us that the project
was no longer maintained, and 2 acknowledged the detected
issues but chose to disregard them, the feedback indicates that
CiD4HMOS can effectively identify compatibility issues in
HarmonyOS apps. In summary, our work makes the following
key contributions:

TABLE I: The version information of major HarmonyOS versions.

No. HarmonyOS Version API Version Release Date
1 2.0.1.95 4 16/12/2020
2 2.1.1.21 5 02/06/2021
3 2.2.0.3 6 15/09/2021
4 3.0.0.5 7 09/06/2022
5 3.1.1.2 8 09/06/2022

• We provide an overview of HarmonyOS API evolution to
measure the scope of situations where compatibility issues
might emerge in the HarmonyOS ecosystem. Additionally,
we display real-world examples of API-related compatibility
issues, thereby validating the necessity for compatibility
issue detection in HarmonyOS apps.

• We are the first to propose an approach for detecting com-
patibility issues in HarmonyOS apps, i.e., CiD4HMOS 1.
Experimental evidence, a total of 325 backward and 15
forward compatibility issues, demonstrates that CiD4HMOS
can be effectively utilized for HarmonyOS compatibility
issue detection.

• We conduct a thorough analysis and summary of the com-
patibility issues identified in the collected HarmonyOS apps,
proposing relevant solutions and sharing the reports with app
developers. We have received positive feedback in response
to our findings and suggestions.

II. BACKGROUND & MOTIVATION

A. HarmonyOS API Versions and Evolution

HarmonyOS is an operating system that was launched by
Huawei in August 2019. Initially, the system was only used
for IoT, but later in September 2020, Huawei introduced
HarmonyOS 2.0 alongside the mobile system at the Huawei
Developer Conference [22]. To date, HarmonyOS has intro-
duced 8 release versions of the SDK. As the HarmonyOS 1.0
SDK is no longer available, we concentrate our research on
HarmonyOS 2.0 and subsequent SDK versions. There are three
types of official release definitions [30], i.e., Canary, Beta,
and Release, representing preliminary versions for specific
developers, beta versions for all developers (both without API
stability guarantees), and official releases ensuring stable APIs
for all developers, respectively. Given the minimal differences
between the Canary, Beta, and Release versions of each
major release and their relatively short usage durations, we
opted to use the Release version of each major release as
a representative sample. Table I displays the correspondence
between each major HarmonyOS version, API level, and their
respective release dates [30].

We extracted all public APIs and deprecated APIs from
four major versions of the HarmonyOS framework, ranging
from API Version 4 to API Version 7 2. We then established
a public relation for each accessible API, allowing for the
connection of the same APIs across different versions through
this relation. This process enabled us to obtain the number of
APIs per version and assess the modifications of each update.

1https://github.com/CiD4HMOS/CiD4HMOS
2The reasons for not discussing API Version 8 are stated in Section VI.



14634
16476 16577

18249

179 262 283 386
1902

102
1674

60 1 2

API Version 4 API Version 5 API Version 6 API Version 7

APIs Deprecated APIs Added APIs Removed APIs

Fig. 1: The statistics of API numbers of HarmonyOS versions.

Figure 1 presents our statistical analysis of HarmonyOS API
versions. Initially, we tallied the total number of API methods
in each version, noting a growth of approximately 24.7%
across four versions. In our analysis, we counted the number
of APIs marked as @Deprecated (such as the case shown in
Figure 2) in each HarmonyOS SDK version, which accounted
for approximately 2% of all API methods at API Version 7.
In addition, we use API Lifecycle, a model that allows easy
querying of API additions or removals, to calculate the in-
crease or decrease in the number of APIs between consecutive
versions. Notably, a larger number of API methods were added
to the HarmonyOS framework during the transitions. Since the
SDK of the API Version 3 is unavailable now, the Added APIs
and Removed APIs for API Version 4 are not displayed. We
then tallied API deletions by version. Currently, this feature is
not prominent in large numbers in HarmonyOS, with a total of
60 API methods removed in API Version 5 and just 2 removed
in API Version 7. Overall, as evidenced by the statistics, a
substantial portion of APIs are only available in a limited
number of SDK versions.

Studies [18], [20], [27], [31] have shown that accessing
unavailable APIs without proper safeguards can lead to app
crashes and negatively affect users’ experience. Thus, using
these APIs could result in compatibility issues. Some APIs
are unavailable since they are erased from the current SDK
version. Other APIs could have been recognized as vulnerable
and their usage could compromise the security issue, hence,
it is not advisable to employ them. As a result, they are
marked as “@Deprecated”. For example, Figure 2 shows an
API, sendMessage, excerpted from the HarmonyOS developer
documentation [32], which reminds developers to pay attention
to the API noted with “@Deprecated” in API Version 4.
Deprecation during SDK version updates is one of the most
common causes of compatibility issues [23]. If a program
invokes this deprecated API and is executed under API Version
5 (where the API has been removed) or higher SDK versions,
a java.lang.NoSuchMethodError will be thrown, leading to an
app crash.

To avoid this problem, HarmonyOS has designed an API-
based protection scheme that encompasses its operating sys-
tem, app market, and apps, where developers can set param-
eters for their apps to notify the markets and users about the
app’s version range. Typically, the config.json file in the .hap

sendMessage
@Deprecated
public void sendMessage (String destinationHost,String serviceCenter,String content)
Deprecated. Replaced by sendMessage(int, java.lang.String, java.lang.String, java.lang.String, 
ohos.telephony.ISendShortMessageCallback, ohos.telephony.IDeliveryShortMessageCallback). 
Sends an SMS message.

Applications must have the ohos.permission.SEND_MESSAGES permission to call this method.

Since:
4

See Also:
splitMessage(java.lang.String)

Fig. 2: Documentation and deprecation message of sendMessage.

folder of the app should include the following two API-related
items:
• Compatible: The minimum level of API supported by the

app.
• Compile/Target: The level of API used by the developers

for app development.
For each app, developers can set the Compatible - equal to

minSdkVersion in Android - and Compile - equal to targetS-
dkVersion in Android - parameters in build.gradle to tell the
user or the app market which SDK versions are supported by
the system.

B. Compatibility Issues

Compatible Acutual
Compatible
Version

Acutual
Max
Version

Target
Version

Backward 
Compatibility Issues

Forward 
Compatibility Issues

Fig. 3: Examples for Backward and Forward Compatibility Issues.
The Actual Compatible Version and Actual Max Version refer to the
range of app versions where all APIs can be called and executed
without any issues.

Compatibility issues are prevalent in most SDKs. Between
different SDK versions, compatibility issues may arise from
the inaccessibility or absence of the called API due to API
additions, modifications, deprecations, etc. Figure 3 illustrates
this phenomenon. An app is expected to function flawlessly
when the device operating it has a HarmonyOS SDK version
equal to or higher than the version specified by Compile. How-
ever, if the developer sets Compatible to an SDK version lower
than the Actual Compatible Version, a backward compatibility
issue could arise when the app runs on a version between
Compatible and the Actual Compatible Version. In such cases,
triggering an inappropriate API will cause the app to crash
due to the inability to find the corresponding API. Likewise,
forward compatibility issues may emerge if an app runs on a
version higher than its Actual Max Version and the relevant
API is invoked. Failure of an app to function on a system
equipped with a suitable SDK version can significantly impair
the user experience. Unfortunately, it is clear from research
into Android API compatibility issues that many mobile app



developers do not have precise control over the range of
versions their apps use, and will not even react to SDK version
updates [24], [25]. Therefore, it is essential for HarmonyOS
mobile app developers to utilize a tool capable of detecting
the correct SDK range for their apps.

C. Motivation Example

Listing 1 presents a code snippet excerpted from an open-
source app, PaletteImageView [33]. The Compatible and Com-
pile settings for this app are set at 4 and 5, respectively.
This suggests that the developer intends for the app to
function optimally on an API Version 5 operating system
while maintaining minimum compatibility with API Version
4. Unfortunately, within this project, the developer invokes
API setEstimatedSize(int, int), as illustrated in Line 3, which
was only incorporated into ohos.agp.components starting from
API Version 5. Thus, if the app runs on a mobile device
with an API Version 4 environment and an invocation of this
API is triggered, it will result in the app crashing. This is
a typical case of a backward compatibility issue, where the
developer inadvertently calls an API that is not compatible
with the specified version and fails to implement versioning
protection when the potentially problematic API is invoked.
Such instances are not coincidental during our preliminary
exploration. Therefore, it is crucial to employ a detection tool
specifically designed to address API-induced compatibility
issues arising from inappropriate HarmonyOS SDK version
settings.

1 public boolean onEstimateSize(int
widthMeasureSpec, int heightMeasureSpec) {

2 ...
3 setEstimatedSize(
4 EstimateSpec.getChildSizeWithMode(
5 mWidth, mWidth, EstimateSpec.NOT_EXCEED),
6 EstimateSpec.getChildSizeWithMode(
7 mHeight, mHeight
8 , EstimateSpec.NOT_EXCEED));
9 ...

10 }

Listing 1: An example of Backward Compatibility Issue.

III. OUR APPROACH: CID4HMOS

A. Overview

In this section, we introduce CiD4HMOS, an innovative
approach developed to tackle app compatibility issues within
HarmonyOS apps. CiD4HMOS determines compatibility is-
sues by detecting whether the version of an app aligns with
the lifecycle of the APIs utilized within the app. Once provided
with the existing SDK version and the app under examination,
CiD4HMOS automatically detects compatibility issues, subse-
quently generating a comprehensive report detailing the origin
and underlying cause of each identified issue.

B. Framework

As displayed in Figure 4, CiD4HMOS comprises three
primary modules: HarmonyOS API Lifecycle Modeling
(HALM), HarmonyOS API Usage Extraction (HAUE), and

HarmonyOS API Compatibility Analysis (HACA). We now
delve into the functions and structures of these individual
modules.

HarmonyOS
SDK

HarmonyOS
APP

HALM
HarmonyOS API 

Lifecycle Modeling

HAUE
HarmonyOS API Usage 

Extraction

HACA
HarmonyOS API 

Compatibility Analysis

API Lifecycle

API Usage

Compatibility
Issues

CiD4HMOS

Fig. 4: The working process of CiD4HMOS.

1) HarmonyOS API Lifecycle Modeling (HALM): HALM’s
primary function is to construct a lifecycle model for Har-
monyOS’s APIs. This lifecycle can be employed to determine
the range of any API within HarmonyOS, from its initial
addition to the SDK to its final version in effect. While
a comprehensive lifecycle model is highly practical, several
challenges arise in constructing a complete and reliable life-
cycle.

API Extraction. Our extraction targets comprise all official
versions of the HarmonyOS SDK since its public release. This
phase involves extracting APIs from the JAR file, focusing
on the return values, names, and parameters. These are then
saved in a specific format within the respective text files of
each version.

API Lifecycle Modeling. After the extraction of APIs,
HALM reads successive versions of the APIs to determine
whether the current API has made a previous appearance.
This process allows us to identify the introduction and deletion
versions of each API. Upon completing the analysis across all
versions, we can effectively model the lifecycle of the APIs.
Interacting with this model facilitates the determination of the
lifecycle of any specific API. For instance, the lifecycle of
the getColor(int) API from the ohos.app.Context class was
introduced in API Version 5 and persists until API Version 7.

Since HALM’s entire extraction process is fully automated,
the lifecycle extracted by HALM can be easily updated even
if a new version of the API is introduced.

2) HarmonyOS API Usage Extraction(HAUE): In the
HAUE module, our objective is to recognize all APIs invoked
within the app under detection, extracting those APIs that meet
the detection criteria as the output. Notably, HAUE does not
require access to the app’s source code; the compiled HAP
file 3 suffices. To extract these APIs, we divide HAUE into
the following three processing steps:

Load additional code. While constructing apps in the
format of HAP, developers typically segregate functionalities
of different modules, which, after compilation, become differ-
ent DEX files. We term these codes as extra codes. During
runtime, the corresponding DEX file is loaded into the system
when a section defined in the module is invoked. Since the

3The HAP file in HarmonyOS is an installation package format used for
deploying Harmony apps onto compatible devices.



extra code also accesses the HarmonyOS APIs, it should be
considered when extracting API calls to avoid overlooking
potential compatibility issues. We employ Li et al.’s [34]
heuristic-based approach to locate dynamically loaded code. In
particular, we decompress the provided HAP app, recursively
check the files within, and extract all DEX files for potential
compatibility issue detection.

Establish a conditional call graph. While it’s straight-
forward to identify all APIs causing compatibility issues
by simply checking if detected APIs fall within the app
developer’s set version range, this method can lead to false
positives. Some developers adopt the API Protection strat-
egy to avoid errors across varying device versions and
to maintain consistent functionality by invoking different
APIs under different versions. By using a system call, i.e.,
ohos.system.version.SystemVersion: int getApiVersion(), before
calling the APIs to get the current SDK version, and then
dynamically selecting appropriate APIs during runtime, the
approach effectively avoids compatibility issues and enables
specific requirements to be met. Listing 2, excerpted from
an open-source app called TimeTableView [35], presents a
challenge for compatibility issue detection. The API setFor-
wardTouchListener at Line 3 was introduced starting from API
Version 7. Invoking this API on a device with an API Version
of 6 would inevitably lead to a crash. To circumvent this,
developers ensure functionality by invoking a different API,
i.e., API setTouchEventListener at Line 7, on devices with
different API versions. This situation poses a challenge for the
detection of compatibility issues, as it first necessitates deter-
mining whether the API is protected, followed by verifying
the accuracy of the protection scope.

1 public ElasticScrollView(Context context,
AttrSet attrSet, String styleName) {

2 if (SystemVersion.getApiVersion() >= 7) {
3 setForwardTouchListener(new

ForwardTouchListener() {
4 // if block
5 });
6 } else {
7 setTouchEventListener(new

TouchEventListener() {
8 // else block
9 });

10 }
11 // outside block
12 }

Listing 2: An example of API Protection.

To tackle this issue, we perform a backward data flow analy-
sis in the HAUE module to ensure that APIs are invoked within
suitable system environments. Recognizing that conditional
judgments may not always execute within the current method,
we designed our backward data flow analysis to possess cross-
program judgment capabilities, thereby preventing inaccurate
detections. In order to simplify the analysis process by HAUE,
we make use of a specialized call graph known as a conditional
call graph (CCG). This graph is designed to facilitate an
inter-procedural, path-sensitive, and constructor-aware back-
ward data-flow analysis. A CCG is characterized by a tuple
(V,E,C, f), where V denotes a set of methods that form the

vertices of the graph, and E signifies a set of directional edges
that link two methods. For instance, in the edge v1 → v2, v1
acts as the caller and v2 is the callee. C represents a set of
conditions tied to the API version. f : E → 2C is a function
that assigns a subset of conditions to each edge. For a given
edge e1 : v1 → v2, if f(e1) = c1, c2, it implies that there exist
at least two distinct call paths from method v1 to method v2,
each associated with a unique condition (c1 and c2).

Resolve API Usage. After completing the first two steps, we
introduced all the extra code and determined if the app requires
protection when invoking the API. At this point, HAUE can
resolve API usage as long as it can ascertain whether the
method called by the app is a HarmonyOS API. At present, our
focus is centered on the publicly accessible APIs as released by
HarmonyOS. Once we detect a HarmonyOS API, we produce
an output that provides details about the API, its call pathway,
and any other relevant information.

3) HarmonyOS API Compatibility Analysis (HACA): With
the HarmonyOS API lifecycle model obtained from HALM
and all API calls in the app under detection derived from
HAUE, HACA’s role is to correlate these two sets of infor-
mation. Each API discerned by HAUE can be referred to in
the lifecycle model. Upon retrieving the respective lifecycle,
HACA compares it with the Compile and Compatible set by
the developers. For APIs that developers have protected, the
comparison is made while considering conditional protections
to filter out potential false positives. APIs that do not comply
with the lifecycle are reported as compatibility issues. This
approach allows us to generate dependable compatibility issue
reports and effectively pinpoint potential compatibility issue
APIs based on their paths. More specifically, the produced
reports enumerate all the APIs invoked by the app with
compatibility issues, detailing the lifecycle of these APIs as
well as every method that has called upon these problematic
APIs.

C. Implementation

The implementation of CiD4HMOS draws inspiration from
CiD [20]. Primarily developed in Java, CiD4HMOS has been
tested on a machine running Windows 11. HAP files are sim-
ilar to APK apps, both of which can be treated as compressed
packages. CiD uses DexHunter to obtain all DEX files in
APK, but this util cannot be directly applied to HAP apps,
necessitating modification of the input entry. We created a
bash file (tested only on Ubuntu 20.04 but can be manually
decompressed on Windows) to automatically decompress the
HAP app, extract the DEX file, and use it as input.

We implemented the backward data flow analyzer on top
of Soot [36], a Java framework designed for analyzing,
instrumenting, optimizing, and visualizing Java applications.
Soot effectively extracts both intra-program and inter-program
fragments for CiD. In the HAUE stage, we require a collection
file of HarmonyOS APIs to ascertain whether the current API
belongs to HarmonyOS. Therefore, we generated a TXT file
containing HarmonyOS API data and used the Soot runtime to
judge API affiliation by referencing this file. When it comes



to determining running conditions, we need to invoke the
ohos.system.version.SystemVersion: int getApiVersion() func-
tion of HarmonyOS. This step helps us to understand the scope
of API protection as defined by the developer.

Furthermore, we have compensated for the limitations in
CiD’s handling of conditional call graphs, i.e., CiD does not
sufficiently consider the protection scenarios for APIs. CiD
assumes that anything within the if block is safeguarded,
while anything outside this block acts as a counterbalance
to the if condition. While this approach works under certain
conditions, it can lead to incorrect detections if a developer
uses an if-else statement or invokes other APIs outside of the
if block. Listing 2 serves as an example. If an API, designed
to run exclusively under a specific SDK version, such as API
Version 6, is invoked outside of the if-else blocks - e.g., at
Line 11 - it could potentially create problems. The CiD mode
might mistakenly assume that this invoked API is protected
and within the appropriate scope. However, this can indeed
lead to compatibility issues and cause crashes when running
on devices operating under other SDK versions, e.g., API
Version 7. To address this, we have meticulously dissected
the if-else protection structure, separating it into if, else, and
outside blocks. The if block contains the positive aspect of
API protection, the else block holds the negative aspect, and
the outside part is considered unprotected. This strategy allows
CiD4HMOS to eliminate a large number of false detections,
addressing a key shortcoming of CiD [27].

IV. STUDY DESIGN

A. Research Questions

The goal of this work is to evaluate whether CiD4HMOS
can effectively detect compatibility issues in HarmonyOS
apps. To evaluate the accomplishment of our objective, we
aim to answer the following three key research questions:
• RQ1: Can CiD4HMOS effectively detect API compatibility

issues within HarmonyOS apps?
• RQ2: What types of compatibility issues exist within the

current HarmonyOS apps? Are there generic fixes for dif-
ferent types of software compatibility issues?

• RQ3: Can CiD4HMOS perform practically on commer-
cially released HarmonyOS apps? What has been the feed-
back from developers on our detection reports?

B. Dataset

To address RQ1 and RQ2, we first gathered source code
from open-source HarmonyOS apps available on Gitee [28],
adhering to specified criteria which limited the main program-
ming language to Java and restricted the version requirements
to fall between API Versions 4 and 7. After manually removing
projects that failed to compile and run using DevEco Studio,
we assembled a collection of 501 open-source projects. For
RQ3, we crawled commercially released HarmonyOS apps
from Huawei AppGallery [29], with further restrictions that
the apps align with the latest API version and have over 10,000
downloads. After filtering based on these constraints, we

identified 23 eligible apps that may help uncover compatibility
issues that are harder to detect.

V. STUDY RESULTS

A. RQ1: assessing CiD4HMOS’ effectiveness.

To evaluate the effectiveness of CiD4HMOS in detect-
ing API compatibility issues, we executed it on the dataset
comprised of 501 open-source projects gathered from Gitee.
Table II presents projects with detected forward compatibility
issues and those with more than three backward compatibility
issues. The third column refers to the commit IDs of the
projects obtained from Gitee and employed in our experiments.
The fourth and fifth columns indicate the developers’ version
range settings for the projects. The sixth and seventh columns
show the compatibility issues identified by CiD4HMOS. The
majority (62.86%) of backward compatibility issues were
found in projects with a Compatible of 4 and a Compile higher
than or equal to 5. Out of 501 projects, 35 have backward
compatibility issues, accounting for 7% of the total number of
projects. In addition, 14 projects were detected with forward
compatibility issues, with two projects detected with both
backward and forward compatibility issues. As mentioned in
Section II, this is attributable to numerous major updates be-
tween API Versions 4 and 5. Beyond that, during the scanning
process, we identified one potential compatibility issue, which,
fortunately, was safeguarded. As shown in Listing 2, the app’s
developer strategically used setForwardTouchListener or set-
TouchEventListener based on the current API Version, thereby
preventing incompatibilities on devices with HarmonyOS at
these API versions.
TABLE II: Results of open source projects detected by CiD4HMOS.

No. Project Name Commit Developers’ Settings #.Compatibility Issues
Compatible Compile Backward Forward

1 colorpicker bb4c21b 4 5 19 0
2 cv4j 7aaee10 4 5 17 1
3 percentagechartview ce1b5c5 4 5 14 0
4 custom-flow-layout c9c6d98 4 7 10 0
5 ohos-imagecropview 96c02d8 4 5 6 0
6 flow-layout-ohos 71131dc 4 5 6 0
7 palette-image-view 2ba37e3 4 5 6 0

8
S.H.Home-
Project-HarmonyOS b66f6d5 4 5 5 0

9 material-icon-lib 402a1a7 4 5 4 0
10 PatternLockView c01b52c 4 5 4 0
11 ZRefreshView 43562b5 4 5 4 0
12 Ohos-Iconics e8603d9 4 6 4 0
13 zxing-embedded d34dc4d 4 5 3 0
14 commonui 62c1c28 4 7 3 0
15 XUI d77362e 5 6 3 2
16 Ohos-ActionItemBadge 19517e6 4 5 3 0
17 MyLittleCanvas a4c86a5 5 5 0 1
18 zoomage 787a9de 5 6 0 1
19 ohos-otpview-pinview 794a4a8 5 6 0 1
20 PinView db2f720 5 6 0 1
21 TimetableView d5defe1 5 7 0 1
22 BottomBar e92074a 5 5 0 1
23 FlycoRoundView 17e7876 5 5 0 1
24 MaterialBadgeTextView 8d0357e 5 5 0 1
25 bubble-popup-window 39c3524 5 5 0 1
26 XPopup 4be8eaa 6 7 0 1
27 EmailIntentBuilder cbf0aca 5 6 0 1
28 SwitchButton 3e02a21 4 5 0 1

Table III showcases the APIs most frequently detected
with backward compatibility issues, primarily belonging to
the ohos.agp.com-ponents.Component class, a core provider of
basic UI components. Given that the majority of HarmonyOS
apps extensively utilize APIs for UI rendering, and that



TABLE III: High number of occurrences of compatibility issues
API.

No. API Life Counts
Backward Compatibility Issues

1 setEstimateSizeListener(EstimateSizeListener) [5,6,7] 8
2 setEstimatedSize(int,int) [5,6,7] 8
3 setVisibility(int) [7] 6
4 getSize(int) [5,6,7] 6
5 setDuration(int) [5,6,7] 5

Forward Compatibility Issues
1 setLayoutRefreshedListener(LayoutRefreshedListener) [5,6] 14
2 setOrientation(int) [4] 1

HarmonyOS itself frequently introduces changes to these UI-
related APIs, the most common compatibility issues tend to
occur within these UI-related components. Conversely, despite
significant changes in API Version 5, the Web Engine module
has been found to have relatively few compatibility issues.

Overall, our analysis uncovered 325 compatibility is-
sues, including 15 forward compatibility issues, distributed
across 47 out of the 501 open-source projects. Exclud-
ing recurring API compatibility issues, we observed 62
backward compatibility issues and 2 forward compatibility
issues. We randomly selected ten compatibility issues, each
caused by a distinct API, and carried out verifications by (1)
manually pinpointing the problematic modules in each project
and scrutinizing the relevant code snippets, and (2) actually
running the apps on a HarmonyOS device, triggering the
suspect APIs to confirm they indeed cause compatibility issues
that could lead to app crashes. All ten sampled compatibility
issues have been manually verified and validated as correct,
with every issue able to be reproduced on the HarmonyOS
device.

RQ1: CiD4HMOS has proven to be efficient at identify-
ing API compatibility issues in HarmonyOS open-source
projects. With the aid of CiD4HMOS, we can quickly and
accurately pinpoint the APIs with compatibility issues.

B. RQ2: examining compatibility issue variations

To investigate HarmonyOS compatibility issues and suggest
solutions, we manually analyzed all identified issues in RQ1’s
dataset and categorized them based on their source code.
We compared the APIs’ function designs and version update
documentation to classify these issues. Subsequently, we man-
ually tested the problematic APIs within selected apps. Based
on the issues and crashes we witnessed, we devised repair
solutions and applied them to the affected apps. we utilized
CiD4HMOS to re-evaluate the modified apps, confirming
that our repair solutions effectively resolved the compatibility
issues. Specifically, through our experimental results, we can
classify API with compatibility issues into six categories, with
four of them associated with backward compatibility issues
and two with forward compatibility issues. We now provide
an in-depth examination of the various compatibility issues
identified:

• API Added constituted the most pervasive API compat-
ibility issue detected within our investigation, representing
77.4% of all backward compatibility issues and 75% of all
occurrences. Such compatibility discrepancies originate when

developers implement an API without duly accounting for its
existence or nonexistence within the context of the project’s
Compatible and Compile versions. This oversight often cul-
minates in runtime errors and other complications that can
impede the software’s performance and overall functionality.

Case Study: ohos.agp.components.Component:void setEs-
timatedSize. The particular compatibility issue related to this
API was brought to light during the CiD4HMOS runtime
analysis. The problematic API was first introduced to the
HarmonyOS SDK in API Version 5 and remained through API
Version 7. Apps employing this API designate Compatible to
4 and set Compile to an elevated version, thereby engendering
compatibility issues when users execute the app on Har-
monyOS with API Version 4. Taking com.ramijemli.percent-
agechartview as a case in point [37], CiD4HMOS run results
indicate that this API is invoked in method onMeasure of
class PercentageChartView. In response to these findings,
we executed the app utilizing this API on a HarmonyOS
device with API Version 4, which resulted in an app crash.
Subsequently, we extracted the error message via the hdc hilog
command, substantiating that the crash originated from an API
compatibility issue.

Fix Recommendations. In light of the extant apps wherein
API added transpires, we advocate for two remedial ap-
proaches. The first entails adjusting the app’s Compatible from
a lower version to one commensurate with the API under
consideration. The second involves selecting an alternate API
predicated on the SDK version of users’ devices. After fixing
the API compatibility issues we mentioned in the original
projects according to our suggestions, we subjected the apps
to a re-evaluation using CiD4HMOS. With the modifications,
the original problem no longer exists.

1 public boolean onMeasure(int
widthMeasureSpec, int heightMeasureSpec) {

2 ...
3 + if(getApiVersion >= 5){
4 setEstimatedSize(widthMeasureSpec,

heightMeasureSpec);
5 + } else {
6 + ...
7 + }
8 return true;
9 }

• API Parameter Modification represents another instance
of API addition. In this case, the API’s name remains the
same, but the type or number of its parameters may change.
If a developer is unaware of this update, or mistakenly
believes that the API was released in an earlier version without
modifications, they may use an older Compatible version,
leading to compatibility issues. In our detection of backward
compatibility issues, we found that this category accounted for
12.9% of all problematic APIs, with a total of 8 distinct APIs.
When considering the number of occurrences, these 8 APIs
appeared a total of 17 times, which constitutes 13.7% of all
instances.

Case Study: ohos.agp.window.dialog.ToastDialog: Toast-
Dialog setDuration. This API serves as a case study of a
compatibility issue identified during the runtime analysis by



CiD4HMOS. In API Version 4, the API returned a value type
of BaseDialog, but in API Version 5, the API was updated
to return the ToastDialog class, a child class of BaseDialog.
Importantly, in Java, references to a child class cannot be
assigned to a parent class. As a result, when users execute this
API on a device operating on API Version 4, the child class
ToastDialog tries to reference the parent class BaseDialog,
which could potentially lead to an app crash. An illustrative
example of this situation can be seen in the open-source project
com.jaredrummler.ohos.colorpicker [38]. In this instance, the
developer uses a ToastDialog type variable to retrieve the
return value of the API showHint from utils.colorPanelView.
When deployed on HarmonyOS operating under API Version
4, this execution led to a crash.

Fix Recommendations. Considering the present open-
source projects with API Parameter Modification compatibility
issues, we propose specific recommendations for different
scenarios. When an API update modifies the return value
type, and the return value is not employed in the original
function, an adjustment may not be needed. However, to
ensure safety, we advocate for the implementation of device
version detection to protect the API. If the API update changes
the type or quantity of parameters, we suggest altering the
project compatibility or securing the API with getApiVersion.

1 public void showHint() {
2 ...
3 - ToastDialog cheatSheet = new

ToastDialog(context).setDuration(2000);
4 + BaseDialog cheatSheet = new

ToastDialog(context).setDuration(2000);
5 or
6 + if(getApiVerson >=5){
7 ToastDialog cheatSheet = new

ToastDialog(context).setDuration(2000);
8 + }
9 ...

10 }

• API Deprecated issue occurs when an older API version is
marked as deprecated in a newer version, but not immediately
removed. These APIs, while still available, are not officially
recommended, and developers are urged to shift to newly
introduced APIs. We identified a single API causing this type
of compatibility issue, comprising 1.6% of all APIs with
backward compatibility issues. Regarding frequency, this API
surfaced twice, making up 1.6% of all occurrences.

Case Study: ohos.agp.window.dialog.ToastDialog: setCom-
ponent(Component). In API Version 5, this API was in-
troduced into the ToastDialog class, replacing the older
setComponent(DirectionalLay-out) API. The replaced API was
also marked as @deprecated in API Version 5.

Fix Recommendations. Although these compatibility is-
sues don’t cause crashes, it’s crucial for developers to address
them, as deprecated APIs might be removed in future SDK
updates. In these situations, using getApiVersion to protect
the API is generally more practical than altering Compatible
directly, given that the code continues to operate correctly
under previous SDK versions. After implementing protection
for the only detected compatibility issue using getApiVersion,

we could no longer identify similar compatibility issues.
1 ...
2 + if(getApiVersion >= 5) {
3 dialog.setComponent(layout);
4 + }
5 ...

• API Moved refers to the relocation of an API from a
parent class to a child class within the SDK. This situation
constitutes a unique instance of API addition, as the API is
duplicated in the child class while the parent class maintains
the original API. Even though these APIs do not directly lead
to crashes, they may still cause issues. Much like in the case of
API Deprecated, the functions of the two APIs within the SDK
may not align, leading developers to unintentionally use the
wrong API. In our study, we found that five APIs, constituting
8.1% of all APIs, were responsible for backward compatibility
issues, and these were encountered 12 times, accounting for
9.7% of all such instances.

Case Study. ohos.agp.window.dialog.ToastDialog: hide().
In API Version 7, this API was introduced to the ToastDialog
class, while in API Version 6, the API originates from its
parent class, the BaseDialog class.

Fix Recommendations. While APIs with this type of
compatibility issue have not led to crashes during our testing,
we still recommend remediation measures in anticipation of
possible changes in future API versions. For these potential
compatibility risks, we suggest differentiating the introduction
of APIs within the child classes using getApiVersion.

1 public void showToast(String toastText) {
2 ...
3 + if(getApiVersion < 7){
4 ((BaseDialog) dialog).hide();
5 + }
6 + else {
7 + dialog.hide();
8 + }
9 ...

10 }

• API Inherited occurs when an API is removed from a
child class and an identical one is added to its parent class. In
our experiments, all 15 detected forward compatibility issues
fell under this category. Similar to API Moved, this type of
forward compatibility issue doesn’t directly cause crashes,
yet it may pose potential challenges.

1 protected void onCreate() {
2 ...
3 + if(getApiVersion < 7){
4 et_input.setLayoutRefreshedListener(...)
5 + }
6 + else {
7 + ...
8 + }
9 ...

10 }

Case Study: ohos.agp.components.Text:setLayoutRefreshe-
dListener(LayoutRefreshedListener). In API Version 5, this
API was added to the ohos.agp.components.Text class and
subsequently removed in API Version 7, requiring inheritance
from the Component class for usage. For example, in the
InputConfirmPopupView class of the app named com.lxj. xpop-



updemo [39], the onCreate method calls this API. The app has
set Compatible and Compile to 6 and 7, respectively, indicating
that in the context of API Version 7, setLayoutRefreshedLis-
tener is no longer present in Text, necessitating a call to the
API in its parent class, Component.

Fix Recommendations. While this API does not currently
lead to direct crashes, the potential differences in the returned
object types might yield unpredictable results during usage.
We recommend using getApiVersion to protect the API and
applying forced type conversion to guarantee the method type
is used with certainty.

• API Removed, one type of forward compatibility issue,
arises when an API from an older version is removed in a
newly launched SDK, causing the older version of the app
to be incompatible with systems running the newer SDKs.
To date, no compatibility issues of this type have emerged
in HarmonyOS, so we cannot provide a specific example.
However, we can still offer recommendations for addressing
such issues.

Fix Recommendations. Compatibility issues, in this case,
are likely to result in No such method error problems, causing
the app to crash. Adjusting the project Compile would restrict
the SDK versions applicable to the project, which is not the
optimal solution. Instead, we suggest utilizing getApiVersion
to protect older versions of the API and employing custom
functions or newer APIs for more recent versions. After
testing, these issues can no longer be detected in applications
modified in accordance with the above recommendations.

RQ2: We present a classification of existing compatibility
issues with HarmonyOS apps and outline corresponding
modifications based on our analysis and examples.

C. RQ3: practical usefulness of CiD4HMOS

CiD4HMOS operates as a tool for detecting API compati-
bility issues in mobile applications, providing developers with
crucial information needed to quickly pinpoint problematic
modules and gain a comprehensive understanding of the
issue’s root cause. This includes details such as the API
call stack and its actual lifecycle. To further substantiate the
practicality of CiD4HMOS, we selected a variety of actively
used HarmonyOS apps from the Huawei AppGallery, beyond
the dataset used for RQ1, and employed CiD4HMOS on
these apps to identify potential API compatibility issues.
These commercially released apps, which are more widespread
than those sourced from Gitee, are updated more frequently,
involve professional developers, and can thus offer valuable
insights about CiD4HMOS’s effectiveness. As per Huawei
AppGallery’s submission guidelines [40], apps need to be
compressed into a .app format using the Build APP function
in DevEco Studio before they can be submitted. This .app
file encapsulates all the project’s feature and entry modules,
along with a pack.info file that houses information about each
project module. Moreover, during the build process, the app’s
Compatible and Compile settings must be consistent across
all modules. Otherwise, the app will not operate correctly.

Notably, most open-source HarmonyOS projects, such as those
in the RQ1 dataset, feature only one entry module, with a few
exceptions containing multiple modules. In light of this, for
this research question, we also tested apps comprising several
feature modules.

Table IV presents the experimental results from the apps
we selected from Huawei AppGallery. The Backward and For-
ward columns represent the number of backward and forward
compatibility issues detected, respectively. Backward Protec-
tion indicates the count of correctly protected APIs through
API checking. It should be noted that the data for Backward
Protection is computed independently from Backward. The de-
tection reports uncovered common compatibility issues found
in open-source apps, as discussed in RQ1, as well as com-
patibility issues in commercially released apps arising from
the APIs in the packages ohos.agp.components.webengine
and ohos.distributedhardware. These packages, which were
introduced to HarmonyOS in API Version 5, are commonly
used for web communication, explaining their scarcity in open-
source software and their prevalence in commercially released
apps. Additionally, the successful detection of backward com-
patibility issue protection in these apps provided empirical
data to verify this feature. Developers effectively utilized the
getApiVersion API to safeguard against these issues, thereby
preventing backward compatibility issues in the APIs provided
in API Version 7.

In order to validate our detection results and confirm that
developers can identify the faulty API location based on the
information we provide, we organized the collected reports by
type and submitted them to the Issues sections of open-source
projects on Gitee or to the email addresses of developers of the
commercially-released apps. We communicated these reports
with 30 developers responsible for the 60 apps with compat-
ibility issues, from which we received 8 positive responses.
20 developers either did not respond or informed us that the
project was no longer maintained, and 2 acknowledged the
detected issues but chose not to address them. Importantly,
the 8 issue reports were directly confirmed by developers who
proceeded to rectify their programs based on our insights, with
the revisions subsequently committed to their code repositories
via Git. Several developers indicated that our work was
practically valuable, assisting them in swiftly and effectively
identifying perplexing compatibility issues. This feedback
underscores the effectiveness of our efforts and our ability
to alert development teams to compatibility issues within
their apps, thereby enabling necessary rectifications. Moreover,
while some developers initially disputed our proposed API
Moved issue as unnecessary — since it did not directly induce
software crashes — our subsequent dialogues successfully
persuaded several developers to understand and agree with
our perspective, leading them to fix the corresponding parts
of their programs.



TABLE IV: Detected results of commercially released apps.
No. App Name Downloads Update dates APIs Backward Backward Protection Forward

1 bankcomm 190,000 2021-11-02 1967 0 0 1
2 baidu 190,000 2021-10-03 444 1 0 1
3 cctv 2,110,000 2022-01-28 5277 0 0 0
4 citiccard 330,000 2022-03-11 3689 1 0 0
5 cto51 10,000 2021-12-13 52 0 0 0
6 dzh 90,000 2022-03-17 901 1 0 1
7 dzwww 10,000 2022-03-30 503 34 0 0
8 f1schedule 90,000 2022-03-17 124 0 0 0
9 flynormal 540,000 2022-04-07 1103 73 3 0
10 foundao 100,000 2021-08-30 67 0 0 0
11 ifeng 40,000 2021-12-10 138 0 0 0
12 ithome 890,000 2022-04-01 1005 0 1 1
13 moji 680,000 2021-11-01 491 0 0 0
14 pconline 20,000 2022-03-15 769 0 0 0
15 reader 10,000 2022-02-14 1046 80 0 1
16 sina.news 2,660,000 2022-04-01 4728 1 6 0
17 sjweather 60,000 2022-03-04 244 0 0 0
18 tzt 10,000 2022-03-12 799 3 0 1
19 uupt 10,000 2022-04-02 1025 0 0 0
20 wakeup 400,000 2022-03-23 110 0 0 0
21 weibo 440,000 2022-03-30 2136 100 0 0
22 zjs 20,000 2021-11-26 259 42 0 0
23 zyxuexishidai 10,000 2021-09-17 990 50 0 1

RQ3: We demonstrated that CiD4HMOS can provide accu-
rate and pertinent information about compatibility issues to
developers, enabling them to locate and address these issues
effectively.

VI. DISCUSSION

Software Coding Language. HarmonyOS app development
permits a blend of Java, JavaScript, and ArkTS languages.
As of now, CiD4HMOS only supports compatibility checks
for Java modules within HarmonyOS apps. Fortunately, after
randomly decompiling 80 apps from Gitee and Huawei App-
Gallery, we observed that 63 were primarily written in Java,
with a few leveraging JavaScript for interfaces or components.
Even though ArkTs was introduced alongside HarmonyOS 3.0
(corresponding to API Version 8) as a coding language for
HarmonyOS apps, its stability remains questionable. More-
over, its recent Beta version (API Version 9) presented sig-
nificant changes from the previous release. Given its current
instability and the availability of only two versions, including
the newly released Beta API Version 9, our focus is primarily
on the Java SDK, i.e., API Version 7 and earlier versions.
Hence, expanding our tool’s capabilities to cover other coding
languages will be a primary objective for future work.

“Expired” Experimental Data. The data collected in RQ1
may be outdated compared to the latest version, potentially
affecting the study. At the time of data collection, most apps
on Gitee didn’t use the latest API Version 8, reducing forward
compatibility issues. However, numerous cases between API
Versions 4 and 6 helped detect backward compatibility issues
for API Version 7. The threat was minimized by creating
benchmark apps using forward compatibility issues from API
Version 7 to test detectability.

Duplicate Function Naming. Our data analysis suggested
that due to the early development stage of the HarmonyOS
framework, some experienced developers might evolve ex-
isting APIs, leading to user-defined methods with identical
names or parameters as in future HarmonyOS versions. This
may cause CiD4HMOS to mistakenly classify such functions

as compatibility issues when using strings as the search key.
However, users can quickly identify and dismiss these false
positives, and this issue can be mitigated through version
detection.

VII. RELATED WORK

As HarmonyOS is an emerging system with limited API
evolution thus far, we look to related work on Android for
insights. The issue of Android fragmentation has been a long-
standing challenge for users and developers alike, simultane-
ously emerging as a popular topic of research [23], [26], [31],
[41].

API Evolution. Numerous studies have examined the evolu-
tion of APIs in the Android framework [42]. Li et al. [23], [43]
proposed a research-based prototype tool called CDA, which
they applied to various Android framework code versions
to characterize enabled APIs. This tool allowed them to
investigate deprecated API usage and developer reactions to
API deprecation. In addition to deprecated APIs, Li et al. [2]
explored the evolution of inaccessible APIs during Android
platform updates. Xia et al. [44] introduced an automated
tool, RAPID, that combined static analysis and machine learn-
ing techniques. Using RAPID, they conducted a large-scale
empirical study to determine if Android apps had resolved
compatibility issues.

Outside the Android community, numerous studies have
focused on API Evolution. Wu et al. [45] examined API
changes and usage in 22 framework versions of the Apache
and Eclipse ecosystems, identifying and categorizing situations
that affect programs. Aué et al. [46] investigated how and why
APIs evolve, classifying API changes according to their design
intent.

Android Compatibility Issues. In recent years, Android
compatibility issues have gained substantial attention, with
many studies focusing on API evolution and fragmenta-
tion [47]. Scalabrino et al. [24], [48] developed ACRYL,
an automated tool for detecting API compatibility issues in
Android apps. ACRYL infers rules by analyzing conditional



API usage and assigns a confidence level to each rule,
enabling the identification of suspicious APIs. Wei et al.
[31] developed the PIVOT tool through an empirical study
examining device-related compatibility issues. This method
identifies correlations by defining API-Device identifiers, con-
structs inter-procedural control flow graphs, and identifies API
functions related to devices. It then calculates the degree
of API-Device correlation and outputs results with higher
correlation degrees. Li et al. [20] introduced an automatic
detection technique, CiD, to detect potential API compatibility
issues in applications. They achieve this by modeling the API
lifecycle and comparing API calls to determine whether an
API causes compatibility issues. Mahmud et al. [41], [49]
proposed a faster and more accurate tool for detecting API
compatibility issues caused by API evolution, ACID, which
can detect compatibility issues resulting from both Android
method invocations and callbacks. However, this tool can only
detect compatibility issues in a specific SDK, not those caused
by a particular device. Liu et al. [27] used the original dataset
of these tools and newly collected real-world apps as input,
conducting replication experiments on the detection capability
and detection range of these tools. They found that the tools
were unable to detect all compatibility issues fully, with only
a small overlap in the detection results of each tool.

In non-Android communities, some research on compatibil-
ity issues is noteworthy. Brito et al. [50] investigated the use
of deprecated APIs in Java systems and designed a tool to
detect deprecated APIs used in these systems. Zhou et al. [17]
proposed a prototype tool, Deprecation Watcher, with high
accuracy and recall for detecting deprecated API usage in Java
source code.

VIII. CONCLUSION

In this paper, we present a concise overview of HarmonyOS
API evolution to gauge potential compatibility issues in the
ecosystem. With practical examples of such issues, we under-
score the need for compatibility detection in HarmonyOS apps.
We then introduce CiD4HMOS, the first approach proposed
to automate the detection of compatibility issues within Har-
monyOS apps. Despite the limited number of SDK versions,
we found that compatibility issues can arise while developing
apps using current HarmonyOS APIs. Based on these insights,
we designed CiD4HMOS and applied it to apps from both the
open-source community and the HarmonyOS app market. This
enabled us to identify, categorize, and propose solutions for
the APIs most commonly causing compatibility issues. The
evidence from our experimental results and the positive feed-
back from app developers affirm CiD4HMOS’s effectiveness
in detecting HarmonyOS compatibility issues. The replication
package of CiD4HMOS and the experimental data are publicly
available at: https://github.com/CiD4HMOS/CiD4HMOS.

REFERENCES

[1] “Software development kit,” https://en.wikipedia.org/wiki/Software
development kit, 2023.

[2] L. Li, T. F. Bissyandé, Y. Le Traon, and J. Klein, “Accessing inac-
cessible android apis: An empirical study,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016, pp.
411–422.

[3] I. Krajci and D. Cummings, History and Evolution of the Android
OS. Berkeley, CA: Apress, 2013, pp. 1–8. [Online]. Available:
https://doi.org/10.1007/978-1-4302-6131-5 1

[4] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 70–79.

[5] “¡uses-sdk¿,” https://developer.android.com/guide/topics/manifest/
uses-sdk-element, 2023.

[6] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong, “An
explorative study of the mobile app ecosystem from app developers’
perspective,” in Proceedings of the 26th international conference on
World Wide Web, 2017, pp. 163–172.

[7] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate apis with replacement messages? a large-scale analysis on
java systems,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 360–
369.

[8] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update for
android apps,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p.
204–215. [Online]. Available: https://doi.org/10.1145/3293882.3330571

[9] S. A. Haryono, F. Thung, H. J. Kang, L. Serrano, G. Muller, J. Lawall,
D. Lo, and L. Jiang, “Automatic android deprecated-api usage update
by learning from single updated example,” in Proceedings of the 28th
International Conference on Program Comprehension, ser. ICPC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
401–405. [Online]. Available: https://doi.org/10.1145/3387904.3389285

[10] S. A. Haryono, F. Thung, D. Lo, L. Jiang, J. Lawall, H. J. Kang,
L. Serrano, and G. Muller, “Androevolve: automated android api
update with data flow analysis and variable denormalization,” Empirical
Software Engineering, vol. 27, no. 3, p. 73, Mar 2022. [Online].
Available: https://doi.org/10.1007/s10664-021-10096-0

[11] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. Tulio Va-
lente, “How do developers react to api evolution? the pharo ecosystem
case,” in 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2015, pp. 251–260.

[12] P. Kong, L. Li, J. Gao, K. Liu, T. Bissyande, and J. Klein, “Automated
testing of android apps: a systematic literature review,” IEEE Transac-
tions on Reliability, vol. 68, no. 1, pp. 45–66, Mar. 2019.

[13] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Software
Technology, vol. 88, pp. 67–95, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584917302987

[14] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers
react to api deprecation? the case of a smalltalk ecosystem,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: Association for Computing Machinery, 2012. [Online].
Available: https://doi.org/10.1145/2393596.2393662

[15] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of clients of 4 + 1 popular java apis and the jdk,”
Empirical Software Engineering, vol. 23, no. 4, pp. 2158–2197, Aug
2018. [Online]. Available: https://doi.org/10.1007/s10664-017-9554-9

[16] G. Yang, J. Jones, A. Moninger, and M. Che, “How do android operating
system updates impact apps?” in Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems, 2018, pp.
156–160.

[17] J. Zhou and R. J. Walker, “Api deprecation: A retrospective analysis
and detection method for code examples on the web,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 266–277. [Online].
Available: https://doi.org/10.1145/2950290.2950298

[18] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2016. New York, NY,



USA: Association for Computing Machinery, 2016, p. 226–237.
[Online]. Available: https://doi.org/10.1145/2970276.2970312

[19] H. Huang, L. Wei, Y. Liu, and S.-C. Cheung, “Understanding and
detecting callback compatibility issues for android applications,” in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 532–542.
[Online]. Available: https://doi.org/10.1145/3238147.3238181

[20] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 153–163. [Online].
Available: https://doi.org/10.1145/3213846.3213857

[21] “Harmonyos,” https://www.harmonyos.com/en/, 2023.
[22] “Hmos applied on new products,” https://www.huawei.com/en/news/

2021/6/huawei-launches-products-powered-by-harmonyos-2, 2023.
[23] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Character-

ising deprecated android apis,” in Proceedings of the 15th International
Conference on Mining Software Repositories, 2018, pp. 254–264.

[24] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and
R. Oliveto, “Data-driven solutions to detect api compatibility issues in
android: An empirical study,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), 2019, pp. 288–298.

[25] A. Hora, R. Robbes, M. T. Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to api evolution? a large-scale
empirical study,” vol. 26, no. 1, p. 161–191, mar 2018. [Online].
Available: https://doi.org/10.1007/s11219-016-9344-4

[26] Y. Zhao, L. Li, K. Liu, and J. Grundy, “Towards automatically repairing
compatibility issues in published android apps,” in Proceedings of the
44th International Conference on Software Engineering, 2022, pp. 2142–
2153.

[27] P. Liu, Y. Zhao, H. Cai, M. Fazzini, J. Grundy, and L. Li, “Automatically
detecting api-induced compatibility issues in android apps: a compar-
ative analysis (replicability study),” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2022, pp. 617–628.

[28] “Gitee,” https://www.gitee.com, 2023.
[29] “Appgallery,” https://appgallery.huawei.com/Featured, 2023.
[30] “Api released time,” https://developer.harmonyos.com/

en/docs/documentation/doc-releases/harmonyos release
definitions-0000001092857972, 2023.

[31] L. Wei, Y. Liu, and S.-C. Cheung, “Pivot: learning api-device cor-
relations to facilitate android compatibility issue detection,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 878–888.

[32] “Harmony java api document,” https://developer.harmonyos.com/cn/
docs/documentation/doc-references/toastdialog-0000001054440045,
2023.

[33] “Paletteimageview,” https://gitee.com/archermind-ti/palette-image-view/
blob/master/paletteimageview/src/main/java/com/dingmouren/
paletteimageview/PaletteImageView.java, 2023.

[34] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Droidra:
Taming reflection to support whole-program analysis of android
apps,” ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 318–329. [Online]. Available:
https://doi.org/10.1145/2931037.2931044

[35] “Timetableview,” https://gitee.com/HarmonyOS-tpc/TimetableView/
blob/master/entry/src/main/java/com/zhuangfei/hos timetableview/view/
ElasticScrollView.java, 2023.

[36] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot: A java bytecode optimization framework,”
in CASCON First Decade High Impact Papers, ser. CASCON
’10. USA: IBM Corp., 2010, p. 214–224. [Online]. Available:
https://doi.org/10.1145/1925805.1925818

[37] “Percentagechartview,” https://gitee.com/archermind-ti/
percentagechartview/blob/master/percentagechartview/src/main/java/
com/ramijemli/percentagechartview/PercentageChartView.java, 2023.

[38] “Colorpicker,” https://gitee.com/archermind-ti/colorpicker/blob/
master/colorpicker/src/main/java/com/jaredrummler/ohos/colorpicker/
ColorPanelView.java, 2023.

[39] “Xpopup,” https://gitee.com/HarmonyOS-tpc/XPopup/blob/master/
library/src/main/java/com/lxj/xpopup/impl/InputConfirmPopupView.
java, 2023.

[40] “Huawei appgallery submission page,” https://
developer.huawei.com/consumer/en/doc/distribution/app/
agc-help-harmonyos-releaseapp-0000001126380068, 2023.

[41] T. Mahmud, M. Che, and G. Yang, “Acid: an api compatibility issue
detector for android apps,” in Proceedings of the ACM/IEEE 44th Inter-
national Conference on Software Engineering: Companion Proceedings,
2022, pp. 1–5.

[42] L. Li, T. F. Bissyandé, and J. Klein, “Moonlightbox: Mining android api
histories for uncovering release-time inconsistencies,” in The 29th IEEE
International Symposium on Software Reliability Engineering (ISSRE
2018), 2018.

[43] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Cda: Char-
acterising deprecated android apis,” Empirical Software Engineering,
vol. 25, pp. 2058–2098, 2020.

[44] H. Xia, Y. Zhang, Y. Zhou, X. Chen, Y. Wang, X. Zhang, S. Cui,
G. Hong, X. Zhang, M. Yang et al., “How android developers handle
evolution-induced api compatibility issues: a large-scale study,” in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 886–898.

[45] W. Wu, F. Khomh, B. Adams, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of api changes and usages based on apache and eclipse
ecosystems,” Empirical Software Engineering, vol. 21, pp. 2366–2412,
2016.

[46] J. Aué, M. Aniche, M. Lobbezoo, and A. van Deursen, “An exploratory
study on faults in web api integration in a large-scale payment com-
pany,” in Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, 2018, pp. 13–22.

[47] H. Cai, Z. Zhang, L. Li, and X. Fu, “A large-scale study of application
incompatibilities in android,” in The 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019), 2019.

[48] S. Scalabrino, G. Bavota, M. Linares-Vásquez, V. Piantadosi, M. Lanza,
and R. Oliveto, “Api compatibility issues in android: Causes and
effectiveness of data-driven detection techniques,” Empirical Software
Engineering, vol. 25, no. 6, pp. 5006–5046, 2020.

[49] T. Mahmud, M. Che, and G. Yang, “Android compatibility issue de-
tection using api differences,” in 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2021, pp.
480–490.

[50] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate apis with replacement messages? a large-scale analysis on
java systems,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016,
pp. 360–369.


