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Modern language models (LMs) have been successfully employed in source code generation and understanding,
leading to a significant increase in research focused on learning-based code intelligence, such as automated
bug repair, and test case generation. Despite their great potential, language models for code intelligence
(LM4Code) are susceptible to potential pitfalls, which hinder realistic performance and further
impact their reliability and applicability in real-world deployment. Such challenges drive the need for a
comprehensive understanding - not just identifying these issues but delving into their possible implications and
existing solutions to build more reliable language models tailored to code intelligence. Based on a well-defined
systematic research approach, we conducted an extensive literature review to uncover the pitfalls inherent in
LM4Code. Finally, 67 primary studies from top-tier venues have been identified. After carefully examining
these studies, we designed a taxonomy of pitfalls in LM4Code research and conducted a systematic study
to summarize the issues, implications, current solutions, and challenges of different pitfalls for LM4Code
systems. We developed a comprehensive classification scheme that dissects pitfalls across four crucial aspects:
data collection and labeling, system design and learning, performance evaluation, and deployment and
maintenance. Through this study, we aim to provide a roadmap for researchers and practitioners, facilitating
their understanding and utilization of LM4Code in reliable and trustworthy ways.
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1 INTRODUCTION
With every upgrade, language models (LMs) seem to redefine future boundaries. Language models
have achieved remarkable successes in natural language understanding and generation [97, 148],
underlined by the significant contributions from state-of-the-art models such as T5 [35, 160],
BERT [38, 39, 85], and GPT [77, 165]. Due to the format similarity between source code and natural
language, languagemodels have beenwidely applied in the domain of software engineering [18, 103].
They are now extensively researched and employed for source code understanding and generation,
such as code completion [114, 114, 125], code summarization [39], code generation [83, 128], code
search [138], program repair [30, 165], and test case generation [180]. With powerful learning
capabilities, languagemodels have shown superior performance against traditional code intelligence
approaches, such as template-based, heuristic-based, and machine learning-based approaches [58,
111, 125]. Their superior performance stems from the fact that many LMs are trained on vast and
diverse code repositories, enabling LMs to discern complex syntax, comprehend semantic context,
and effectively predict code sequences [152].
However, the lack of transparency, often termed “black-box”, poses significant challenges and

concerns [141, 143]. In other words, while language models for code intelligence (LM4Code)
approaches offer powerful capabilities, they often lack transparency in their underlying reasoning
and decision-making process. Tantithamthavorn et al. also raised concerns that such a lack of
transparency often leads to a lack of adoption of LM4Code in practice [61, 143]. Consequently,
hidden or neglected pitfalls in data or algorithms may persist, leading to unrealistic performance
evaluation and unreliable code recommendations [52, 142]. For example, Shi et al. [133] found
that noisy data (e.g., empty methods or duplicated code) was prevalent in widely-used benchmark
datasets for code summarization, with contamination levels ranging between 31% to 66%. By filtering
out this noisy data, performance metrics like the BLEU-4 score witnessed a substantial increase
(e.g., from 11.36% to 16.48%). Similarly, Sun et al. [138] highlighted a substantial amount of noise in
user queries across various code search benchmark datasets. Such instances underscore the hidden
data noise that might undermine the trustworthiness of code produced or recommended by LMs.
What’s more concerning is when these pitfalls go unnoticed, which raises significant questions
about the reliability and integrity of the LM4Code systems built on them, thereby preventing the
adoption of research advances in academia and industry.
As LMs become increasingly prevalent in code intelligence despite increasing obstacles, there

emerges an urgent need for a comprehensive understanding of potential pitfalls within LM4Code
systems. This isn’t limited to pitfall identification; it demands a deeper exploration into the under-
standing of the implications of these pitfalls, current solutions, and possible challenges. Although
there is a growing body of research concerning or addressing pitfalls in LM4Code [90, 133, 138, 175],
the domain lacks a comprehensive and systematic overview of these efforts. Without such an
overview, researchers, developers, and practitioners potentially overlook significant pitfalls identi-
fied in previous studies. In this study, we conducted a systematic literature review, adhering to a
well-defined approach that identifies, evaluates, and interprets the relevant literature that focuses
on the pitfalls within LM4Code. Our contributions of this paper are as follows:

• Paper Collection of Pitfalls in LM4Code. Through a rigorous systematic literature review (SLR)
protocol as outlined by [66, 68] and after an in-depth analysis of the primary studies, we
collected 67 primary papers (spanning 2018 to 2023) closely related to evaluating or addressing
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Figure 1. Distribution of papers over years
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Figure 2. Distribution of papers across LMs

LM4Code pitfalls. Comprehensive details on our review process and the collected papers are
available online 1.

• Compresensive Taxonomy. We conducted a qualitative and quantitative synthesis of the
collected studies. We present a taxonomy of the collected studies according to the LM4Code
lifecycle, including data collection and labeling, system design and learning, performance
evaluation, deployment, and maintenance. Our synthesis investigates the pitfalls present in
LM4Code, summarizes the implications of these pitfalls, investigates how these issues are
addressed, and outlines future challenges in this field.

• Insightful Findings and Recommendations. In addition to identifying and analyzing pitfalls, we
distilled practical insights and recommendations for researchers and practitioners in the field
of LM4Code. These findings pave the way for developing more robust and reliable language
models tailored for code intelligence, mitigating potential challenges and maximizing their
utility of such models in real-world applications.

2 STUDY DESIGN
2.1 ResearchQuestions and Motivations
In recent research, language models trained for code intelligence have shown promising perfor-
mance [51, 155, 175]. However, an increasing number of literature [101, 133, 138] has highlighted
the existence of pitfalls in LM4Code that can skew their realistic performance, leading to either
substantial overestimation or underestimation of their effectiveness. The aim of conducting this
systematic review is to gain an in-depth understanding of the pitfalls present in language models
tailored for code intelligence. Ensuring the robustness, reliability, and trustworthy deployment
of LMs is important for their effective integration into the software development lifecycle. Con-
sequently, it is crucial to discern the nature of these pitfalls, comprehend their implications, and
examine existing solutions. Thus, we aim to answer the following research questions in this study:

• RQ1: What types of pitfalls are prevalent in language models for code intelligence?
This research question aims to identify the prevalent pitfalls in LM4Code systems, exploring
how they could affect various stages of the learning-based system lifecycle.

• RQ2: What are the implications of these pitfalls? This research question investigates
the implications of the identified pitfalls, specifically focusing on their impacts on the effec-
tiveness, reliability, and ethical considerations of LM4Code systems.

• RQ3: What solutions have been proposed to address these pitfalls? This research
question reviews the existing body of literature to identify proposed approaches for solving
the identified pitfalls.

1https://github.com/yueyueL/ReliableLM4Code
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Figure 3. The overview of pitfalls of LMs for code intelligence

2.2 Paper Collection and Selection
To systematically identify relevant studies on pitfalls of LM4Code, we followed a rigorous method-
ology proposed by Kitchenham et al. [66, 68] and Zhang et al. [178] to perform a lightweight
Systematic Literature Review (SLR). We utilized the “Quasi-Gold Standard” (QGS) [178] approach,
combining manual and automated search strategies across major academic databases. This ensured
comprehensive coverage while maintaining a focus on high-quality studies. In total, we obtained
over 100,000 papers from major academic databases including ACM Digital Library, IEEE Xplore,
Springer, ScienceDirect, Web of Science, and DBLP. Specifically, through QGS we obtained over
100,000 candidate papers from ACM Digital Library, IEEE Xplore, Springer, ScienceDirect, Web
of Science, and DBLP. To filter these results, we defined robust inclusion/exclusion criteria and
performed the quality assessment of full texts. Additionally, we also conducted backward and for-
ward snowballing [67] to complement the database searches and avoid excluding important works.
Through snowballing, we evaluated over 1,000 additional papers. By systematically combining
these search strategies, selection criteria, and quality checks, we identified 67 high-quality studies
investigating pitfalls and challenges in LM4Code. Due to page limits, we make the review protocol
details available in the supplementary report and our online repository.

Figure 1 displays the distribution of the collected research studies across the published year. From
Figure 1, we have noted that there is a significant increase in the number of relevant research stud-
ies published annually from 2021, indicating a rising interest in investigating potential LM4Code
pitfalls. Figure 2 further presents the distribution of language modes used in the collected studies.
It is important to note that while both LSTM and GRU are types of RNN, papers that only specify
the use of RNN without further detail are categorized under “General RNN” in this study. Similarly,
despite observing the utilization of several popular transformer-based architectures such as Code-
BERT, Codex, and CodeT5, papers that merely claim the use of a self-defined or custom-designed
transformer are classified as “General Transformer” in subsequent sections. We find that LSTM
models exhibit a higher prevalence than other types. However, over the past two years, studies
utilizing transformer-based LMs, particularly pre-trained models like CodeBERT and Codex, have
substantially increased. Overall, these findings indicate growing attention toward identifying and
evaluating challenges with the reliability and effectiveness of LM4Code. The community appears
to be moving towards a comprehensive exploration of the realistic performance of LM4Code. Our
systematic collection provides an opportunity to thoroughly analyze LM4Code pitfalls.

2.3 Paper Organization
Through our study collection process, we identified 67 research papers that specifically discuss or
address the pitfalls in LM4Code. In the following content, we aim to answer our initial research
questions based on these papers. Similar to prior research [6], our answers are organized following
the typical workflow of LMs for code intelligence, which ensures the topics discussed in collected
studies can be covered. To be specific, we segment the pitfalls into four key aspects of the LM
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Bias Type Paper SE Tasks Description Implications

Unbalanced Distribution

[14], [168], [134] Vulnerability Detection The ratio of vulnerable and non-vulnerable cases in real-
world projects is extremely unbalanced

F1-score drops by 73%

[173] Defect Prediction Many datasets are imbalanced with target classes under
30%

Imbalanced data results in an F1
score below 0.2

[76] Bug Report Classification, De-
fect Prediction

Class imbalance /

Data Noise

[89], [177] Commit Message Generation Commit messages mix bot-generated content with
human-written trivial messages containing redundant
or easily inferred information.

BLEU-4 drops from 31.92% to
14.19%

[138] Code Search Over one-third of queries of code search datasets contain
noises that make them deviate from natural user queries
(e.g., HTML tags, interrogation)

MRR improves from 0.407 to 0.512
after data cleaning

[133] Code Summarization Noisy code-comment pairs, including non-literal and du-
plicated code, are prevalent in four benchmark datasets
(31% to 66%)

Training three models with the
cleaned datasets improves the
BLEU-4 by 27%, 21%, and 24%

Labeling Errors

[76] Bug Report Classification, De-
fect Prediction

Mislabelled samples - issue reports that describe defects
but are not classified as such.

/

[79] Code Translation, Clone Detec-
tion, Code Search

Most of the collected code snippets are unlabeled /

[101] Vulnerability Detection Error labels are common in many vulnerability datasets F1-score drops by 20.7%

Table 1. Summary of Common Biases in Data Collection and Labeling from Reviewed Research Studies

pipeline: data collection and labeling (Secton 3), system design and learning (Secton 4), performance
evaluation (Secton 5), and deployment and maintenance (Secton 6). This framework is depicted
in Figure 3. For each aspect, we first summarize the types of prevalent pitfalls discussed in the
collected studies (RQ1), then introduce the implications of these pitfalls (RQ2), and finally explore
potential solutions and best practices recommended in the literature (RQ3). In Section 7, we further
discuss open challenges and promising research directions. This organized structure enables a
comprehensive analysis of pitfalls and considerations across the entire LM4Code pipeline. Our
taxonomy aims to provide crucial insights for developing more robust, reliable, and practical LM
systems for code intelligence tasks.

3 DATA COLLECTION AND LABELING
The data-hungry language models require large-scale and high-quality training datasets. According
to a survey by Hou et al. [51], the majority of LMs for code intelligence are trained using data from
open-source platforms, with GitHub and StackOverflow being the most popular options. However,
the data in these platforms are user-contributed, varying significantly in the level of quality and
reliability. It leads to non-negligible noises, bias, and errors in the training dataset and further
affects the behavior of the models, which brings significant pitfalls in LMs for code intelligence.
In this section, we provide a brief description of related studies and discuss the implications and
potential solutions during the data collection and labeling stages.

3.1 RQ1-Pitfalls
From the collected papers, we identified 11 research studies focusing on pitfalls during the data
collection and labeling process. Table 1 presents the statistics of literature on this topic, where the
pitfalls can be grouped into three main categories.
Unbalanced Distribution: Unbalanced distribution arises when there is a lack of proper ran-
domization in the selection of samples, leading to certain populations being underrepresented or
overrepresented [127]. In code-related scenarios, it usually refers to the gap between the sample dis-
tribution of real-world practices and training datasets. For example, as emphasized by [14, 134, 168],
vulnerable instances in vulnerability detection studies are overwhelming while neutral code in-
stances in real-world environments considerably outnumber their vulnerable counterparts. This
imbalance extends to other code-based tasks. In software defect prediction, where defective modules
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are scarce compared with non-defective cases in real-world environments [76, 173]. Similarly, bug
report classification suffers from underrepresentation of the minority bug class [76].
Data Noise: Data noises are the samples that are meaningless or even harmful for the mod-
els to learn, such as samples with deprecated coding conventions, multi-lingual comments, and
auto-generated code snippets [133]. Such noises widely exist in code datasets. For example, as
investigated by Sun et al. [138] and Shi et al. [133], over one-third of the popular code dataset,
CodeSearchNet [54], are noises that are hardly seen in neural code search. Their analysis results
show that the examined datasets contain a multitude of noise categories, including unrelated com-
ments, non-literal characters, and issues like empty or duplicated code. Liu et al. [89] and Zhang et
al. [177] specifically investigated data noise in commit message generations, where approximately
16% of the commit messages of benchmark dataset by Jiang et al. [59] were identified as noises.
Labeling Errors: Labeling errors arise when ground-truth labels are inaccurate, unstable, or
erroneous [6, 144]. In some code-related tasks, such as vulnerability detection, the raw code datasets
need to be labeled by human annotators. Nie et al. [101] explored the labeling error problem in
vulnerability detection wherein a vulnerable code sample is mislabeled as non-vulnerable, and vice
versa. They found that mislabeling a non-vulnerable sample as vulnerable was a more pervasive
issue. The research further assessed three prominent datasets, D2A [183], Big-Vul [29], and Cross-
Vul [102], discovering that in the worst cases, nearly 30% of the labels in these datasets may cause
noisy labels. Similarly, Li et al. [76] examined the datasets from Herzig et al. [49] for Bug Report
Classification (BRC) and from Yatish et al. [172] for Software Defect Prediction (SDP). Their findings
revealed that these datasets possess mislabel rates ranging between 2% and 29%.
Overall, Figure 4 and Figure 5 present the distribution of the 11 papers concerning bias in data

collection and labeling. Figure 4 shows that the issue of data noise has continuously attracted the
attention of researchers, and this attention has intensified significantly in recent years. Figure 5
reveals that while the emergence and widespread use of sophisticated models such as BERT and
GPT [51], the majority of the examined articles on data bias mostly concentrate on conventional
language models, specifically LSTM and GRU. This observation indicates a potential avenue for
further investigation into the data biases present in modern language models.

3.2 RQ2-Implications
Our review results highlight the pervasive presence of pitfalls during the data collection and
labeling processes in various automated code-related tasks. However, the deeper implications of
these pitfalls remain to be fully discerned. Thus, in this section, we aim to summarize the reviewed
papers and provide insights into how these pitfalls influence the overall efficacy and performance
of language models in code intelligence.
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Performance Overestimation: Train-test-split is a common practice for evaluating the neural
models [6]. However, derived from the same datasets, the test set contains the same bias, such as
imbalanced data, as in the train set. It leads to an overestimation of the model’s performance since
there is a gap between the testing dataset and real-world practices. For example, Chakraborty et
al. [14] presented that vulnerability detection techniques are implemented on balanced datasets, and
the models can achieve more than 90% F1 scores. However, the scenario drastically shifts when the
same models are evaluated with a realistic dataset (where only 6% of the examples are vulnerable).
In such cases, while the model could boast a recall as high as 91.24%, this seemingly perfect metric
can be deceptive. A deeper dive reveals a mere 18.47% F1 score, leading to a significant number
of false positives. A similar scenario arises with the introduction of data noise. Zhang et al. [177]
demonstrated this by training Transformer-based methods on a noisy dataset that included both
bot-generated and trivial messages for code commit generation. Remarkably, the model achieved
a 42.4% BLEU-4 score under these conditions. Yet, once the data noise was removed, the BLEU-4
score dropped sharply to 26.2%. Overall, pitfalls in data, whether from sampling imbalances or the
presence of data noise, can lead to exaggerated performance metrics in language models for code
tasks.
Compromised Model Efficacy: High-quality training data serves as the foundation for the
trustworthy training of models. When the training data introduces inherent noises and errors,
language models might inadvertently learn irrelevant patterns or establish spurious correlations.
This not only distorts the model’s understanding but can also undermine its performance. For
instance, Sun et al. [138] proved that code search models, when trained on carefully cleaned data
without data noise, achieve a significant improvement in the number of answered queries and
the rank of ground truth in search results (e.g., MRR improves from 0.407 to 0.512). Similarly,
Nie et al. [101] showed that labeling errors severely compromise the performance of prevalent
vulnerability detection models, with the worst instances seeing an average F1 score plummet of
20.7%.

3.3 RQ3-Solutions
Recognizing pitfalls in data collection and labeling has emphasized the need for robust solutions to
address and mitigate these issues. Several solutions have been proposed in the literature that we’ve
reviewed. These solutions have been organized into distinct categories based on their underlying
principles and methodologies.
Data Cleaning/Denoising: Data cleaning/denoising is the process of improving a dataset by
removing or correcting abnormalities, inconsistencies, and inaccuracies. This phase is critical
to ensuring that the training data is accurate and does not contain any misleading or irrelevant
information. Many pitfalls develop as a result of noisy or erroneous data, and data cleaning
is the major method for dealing with such difficulties. Shi et al. [133] introduced a rule-based
cleaning tool, named CAT (Code-comment cleAning Tool), that employs configurable heuristics
rules to automatically scan and filter out comments and code with syntactic anomalies, thereby
detecting the occurrences and distribution of data noises. Similarly, Sun et al. [138] presented a data
cleaning framework tailored for code search. It begins with a rule-based syntactic filter configured
with heuristic rules to identify syntactically inconsistent comments. This is followed by a model-
based semantic filter, which focuses on comments with the fewest reconstruction discrepancies
using a Variational Auto-Encoder model trained on a pre-established bootstrap query corpus.
Their evaluation results demonstrate that this hybrid filter approach not only significantly save
computational resources but also enhances model accuracy. Nie et al. [101] introduced confident
learning [107] and differential training [167] for denoising-based noisy label detection, aiming to
enhance the label quality of vulnerability datasets. They found that the effectiveness of denoising
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methods heavily relies on the vulnerability detection models’ fitting ability to the datasets, and these
denoising methods show considerable promise in boosting vulnerability detection performance.
Real-world Benchmarks: To precisely evaluate the models, researchers propose to use real-
world benchmarks, instead of train-test-spilt datasets. Many benchmarks are thus constructed. For
example, many benchmarks, such as HumanEval [17], DS-1000 [70], and MBPP [7], are constructed
using human-written tasks and test cases to evaluate the code generation LMs. Compared with
the code snippets in open-source repositories, such human-written tasks are closer to the real
user requests in practice, which better reflects the performance of the model. In addition, the
models can be evaluated directly using the production data accumulated during the operation of
LM-based systems. For example, Hellendoorn et al. [47] and Aye et al. [8] adopt the production data
of code completion systems as the evaluation dataset to better measure the model’s performance.
Similarly, Mozannar et al. [98, 99] use the user behavior data to demonstrate the effectiveness of
their proposed methods. Apart from that, Lin et al. [79] examine their approach on a real-world
dataset composed of programming exercises with multiple solutions.

Summary - Data Collection and Labeling

Based on 11 relevant studies, our literature review reveals three prevalent pitfalls (i.e., unbalanced
distribution, data noise, and labeling errors) in the data collection and labeling process. These
pitfalls propagate, causing overestimated performance and compromised model efficacy. Though
initial solutions like data cleaning/denoising and real-world benchmarks have been proposed,
the field is far from reaching a comprehensive resolution. The implications underscore the need
for automated and scalable techniques to ensure high-quality data for LM4Code.

4 SYSTEM DESIGN AND LEARNING
This section examines pitfalls in the system design and learning process for LM4Code. The training
of these LM4Code models directly impacts their quality and efficacy for empowering code intel-
ligence. However, several challenges arise in crafting optimal model architectures, formulating
strategic training-testing approaches, refining data preprocessing techniques, and selecting suitable
learning algorithms. Each design decision risks introducing pitfalls that can undermine model
robustness and effectiveness.

4.1 RQ1-Pitfalls
We have identified 16 research studies dedicated to the exploration of pitfalls introduced in the
system design and learning process. These pitfalls can be broadly categorized into three categories:
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data snooping, spurious correlations, and inappropriate model design. In the following, we provide
comprehensive descriptions of these three pitfalls.
Data Snooping: Data snooping arises when LMs are inadvertently exposed during training to
information that should be inaccessible. Such unintentional exposure primarily stems from improper
data handling. A common source is improper train-test split, where evaluation/testing data leaks
into training. For example, research has identified instances where training data incorporates
bugs or vulnerabilities that closely mirror those encountered in testing [25, 164]. This concept of
overlap is further supported by Liu et al. [82] highlighting the risks associated with functionality
similarities between train and test data. Another dimension to consider is the origin of the data. For
instance, as emphasized by Steenhoek et al. [134] and Wu et al. [164], using samples from the same
software projects for both training and testing can influence the models. Even data structure and
representation choices enable snooping. Liu et al. [88] and Shi et al. [129] emphasize that pitfalls
can emerge from the data processing processes such as test prefix generation or concurrent use of
same-class data.
Spurious Correlations: Spurious correlations arise when language models mistakenly depend on
irrelevant artifacts rather than the code’s intrinsic logic or intent for decision-making, leading to
misleading associations. The artifacts vary across SE tasks. For instance, in vulnerability detection,
artifacts may manifest as recurring code patterns or reliance on specific function names that LMs
incorrectly associate with vulnerabilities [14, 134]. In code summarization, models might focus
more on strings or certain code structures while overlooking elements key for developers [112].
When generating commit messages in the context of code review, models often produce outputs
that adhere to a few simple patterns, potentially failing to capture the nuances of the actual code
changes [26]. Actually, introducing advanced pre-trained models like CodeBERT has not eliminated
these pitfalls. Specifically, if not fine-tuned appropriately for downstream tasks, these models might
still overemphasize basic elements like keywords over richer code semantics [182].
Inappropriate Model Design: Inappropriate model design in LM4Code arises when the underly-
ing architecture fails to capture critical characteristics of code, such as hierarchy and composition.
The inability to construct robust semantic representations of code’s intricate structural and logical
attributes hinders model efficacy on downstream code intelligence tasks. Such design shortcom-
ings can manifest in several ways. For instance, in vulnerability detection, models may exhibit a
significant overlap in the feature space between classes, hindering precise vulnerability identifi-
cation [14]. Code search models might lean on coarse-grained representations, capturing merely
lexical or structural elements, often overlooking the true functionality of the code [153]. Similarly,
the encoder-decoder framework used in code summarization might neglect the hierarchical nature
of code or struggle with sequence generation, leading to inadequate summaries [151, 159]. This
issue is not limited to traditional architectures. Even modern program repair models, adapted from
neural machine translation, face design-related challenges that affect their translation accuracy
and diversity [25, 96]. While there are innovative attempts such as leveraging deep reinforcement
learning or shared encoder-decoder architectures [79], these approaches still exhibit shortcomings
in addressing the diverse needs of various LM4Code applications.

To summarize, Figure 6 and 7 display the distribution of papers that discuss LM4Code pitfalls in
the system design and learning stage. Figure 6 indicates that while inappropriate model design was
first identified in 2018, research efforts on addressing key pitfalls have increased over the past three
years. Among these, data snooping has garnered increasing research attention. Meanwhile, spurious
correlations have becomemore prominent with the advent of explainable artificial intelligence (XAI)
techniques for elucidating model reasoning [20, 141, 143]. Discussions around inappropriate model
design remain ongoing as new frameworks and learning strategies continue to emerge. Contrary
to our observations regarding the data collection and labeling process, Figure 7 reveals a greater
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emphasis on modern Transformer-based language models compared to conventional architectures.
Specifically, 19% of relevant studies employ BERT, 15% leverage general Transformer models, 11%
utilize CodeBERT, and 7% investigate CodeT5. This distribution highlights a shift towards examining
potential pitfalls in sophisticated language models for code intelligence tasks, setting the stage for
continued research focused on enhancing model transparency, interpretability, and reliability.

4.2 RQ2-Implications
In the system design and learning phase, pitfalls emerge that can distort LM4Code outcomes.
Following the pitfalls identified in the previous phase, these design-related pitfalls similarly lead
to performance overestimation and compromised model efficacy. We will now elaborate on the
specific impacts of these pitfalls and how they manifest in various software engineering tasks.
Performance Overestimation: Pitfalls in system design and learning can lead to over-optimistic
performance metrics for LM4Code models. Data snooping is a major contributor to this overesti-
mation. For example, the presence of overlapping functionality between training and test sets can
elevate the F1 score of a clone detection model from 0.42 to 0.96 [82]. In vulnerability detection,
a mix of projects in both training and testing phases can introduce discrepancies in F1 scores as
large as 0.32 [134]. Spurious correlations represent a subtler and often more elusive challenge.
These pitfalls cause models to make correct predictions, but often for the wrong reasons, leading
them to rely on irrelevant code patterns or unrelated artifacts. This not only misleads performance
interpretation but also makes the models unreliable in varied scenarios [134]. Models might also
give undue attention to superficial code constructs, leading to inefficiencies that don’t necessarily
enhance outcomes [182].
Compromised Model Efficacy:While overestimation impacts perceived performance, inappro-
priate model design directly compromises the efficacy of models in practical scenarios. For example,
token sequence-based vulnerability detection models might fail to capture the underlying causes of
vulnerabilities and instead focus on surface-level patterns, leaving a significant margin for improve-
ment. Chakraborty et al. [14] highlighted this limitation and showed that the use of gated graph
neural networks can improve the baselines by 33.57% in precision and 128.38% in recall. Similarly,
the design limitations in code search models lead them to generate coarse-grained representations
that may overlook core functionalities [153]. Program repair models, based on neural machine
translation models, have shown slow learning curves, achieving a mere 4.5% repair prediction
accuracy even after 10 epochs [25]. This indicates that the structural design of the model hinders
its ability to learn and adapt efficiently.

4.3 RQ3-Solutions
To address the three pitfalls related to the system design and learning process, researchers have
employed a variety of approaches which we describe as follows.
Refined Data Handling: To mitigate the challenges posed by data snooping, a multifaceted
approach is essential. Emphasizing rigorous data partitioning is foundational, as exemplified by
Steenhoek et al. [134], who advocate for cross-project validation to prevent inadvertent overlaps
between training and testing sets. Additionally, techniques like data augmentation and time-based
splits can further insulate models from over-relying on specific pattern [42, 115]. Incorporating
regularization techniques, such as batch normalization, can curb overfitting and deter models
from exploiting inadvertent data correlations [45]. Finally, the importance of external validation,
underscored by Liu et al. [82], ensures that performance assessments are unbiased and reflective
of real-world scenarios. By adopting these strategies, researchers can foster more reliable and
generalizable outcomes.
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Model Interpretability: To address the biases inherent in LM4Code, especially spurious corre-
lations, improving model interpretability has emerged as a crucial solution [141]. By examining
the decision-making process of LM4Code models, researchers are better positioned to pinpoint
and mitigate pitfalls, leading to more reliable predictions [46]. Within vulnerability detection, Fu et
al. [36], Li et al. [75], and Zou et al. [187] proposed methods to enhance explanation accuracy,
leveraging sophisticated visualization tools to correlate the internal dynamics of neural models with
code structures, thus providing a comprehensive understanding of model reasoning. Cito et al. [21]
offers a distinctive perspective, centering on elucidating mispredictions. Their approach, which
integrates neural predictions with symbolic logic, allows for precise error detection accompanied
by rule-based explanations. Additionally, attention mechanisms to explain pre-trained models have
also been analyzed. While Shi et al. [130] unravels how transformer-based models allocate attention
for code summarization, Wan et al. [150] probes into the nuances of attention during code-to-code
translation. These XAI approaches can serve to identify and rectify model pitfalls, ensuring the
reliability of LM4Code applications.
Model Optimization Strategies: In light of the pitfalls introduced by inappropriate model design,
researchers have turned to model optimization strategies to address and minimize their effects.
These strategies encompass several techniques designed to enhance a model’s structure, training
process, and generalization capabilities. Firstly, Model Design Adjustments involve refining the
architecture to better capture data intricacies. Studies like that byWan et al. [151] have demonstrated
the benefits of introducing novel layers or structures to better understand the tree structure of
code, yielding improved performance. Secondly, Model Ensembling is gaining traction, where
the strengths of multiple models are leveraged to offset individual biases, as seen in the work by
Zhang et al. [182] which employs multiple views of the same data for more robust predictions. Lastly,
Regularization and Fine-tuning techniques play a pivotal role. Regularization, such as dropout or
L2 regularization, helps in preventing overfitting, while fine-tuning allows pre-trained models, like
CodeBERT, to adapt to specific dataset nuances, as demonstrated by Fang et al. [31]. By integrating
these strategies, models can be better positioned to achieve superior outcomes.

Summary - System Design and Learning

In this study, we uncover 16 research studies related to pitfalls in system design and learning.
These pitfalls can be categorized into three main categories: data snooping, spurious correlations,
and inappropriate model design. These pitfalls lead to overestimated performance and compro-
mised efficacy of LMs. Proposed solutions encompass refined data handling, model explainability,
and optimization strategies like architecture adjustments, ensembling, and regularization.

5 PERFORMANCE EVALUATION
The performance evaluation stage focuses on precisely assessing and analyzing the model’s perfor-
mance using predefined test sets and evaluation metrics. Additionally, comparative performance
evaluation against benchmarks provides insights into a model’s strengths and weaknesses on
specific code-related tasks. However, potential pitfalls can emerge from factors such as improper
baselines, test sets, and performance metrics. These challenges must be thoroughly examined and
addressed to ensure that the evaluation is unbiased, comprehensive, and representative of a model’s
true capabilities. Thus, this section provides a brief description of related studies and discusses the
implications and potential solutions during the performance evaluation stages.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: October 2023.



1:12 et al.

SMU Classification: Restricted

LSTM

20%

GRU

7%

General RNN

5%
DBN

2%

General 

Transformer
28%

CodeT5

10%

BERT

10%

Codex

8%

CodeBERT

5%
Other

5%

0

2

4

6

8

10

12

14

2018 2019 2020 2021 2022 2023

N
 o

f P
ap

er
s

Published Year

Inappropriate Performance Measures

Low Reproducibility

Inappropriate Evaluation Dataset

Inappropriate Baselines

Figure 8. Paper distribution across time (Section 5)

SMU Classification: Restricted

0

2

4

6

8

10

12

2018 2019 2020 2021 2022 2023

N
 o

f P
ap

er
s

Published Year

Inappropriate Performance Measures

Low Reproducibility

Inappropriate Evaluation Dataset

Inappropriate Baselines

LSTM

20%

GRU

7%

General RNN

5%
DBN

2%

General 

Transformer
28%

CodeT5

10%

BERT

10%

Codex

8%

CodeBERT

5%
Other

5%

Figure 9. Distribution of LMs (Section 5)

5.1 RQ1-Pitfalls
From the collected studies, we identified 29 research studies focusing on pitfalls during the per-
formance evaluation phase. We have methodically categorized the collected literature into four
categories, as shown in Figure 8.
Inappropriate Baseline: Inappropriate baselines arise when the performance evaluation for
LM4Code is carried out without, with limited, or with skewed baseline approaches. Such poor
comparisons fail to convincingly demonstrate the improvements or strengths of newly proposed
LM4Code approaches, potentially leading to misguided experimental findings or exaggerated
efficacy claims. For instance, comparing only against basic rule-based approaches would inflate
capabilities, while limiting comparisons to other advanced LM-based approaches masks potential
weaknesses. Liu et al. [88] highlight this issue in state-of-the-art Neural Test Oracle Generation
(NTOG) evaluation, where the lack of a straightforward baseline causes considerable gaps between
reported and real-world performance.
Inappropriate Evaluation Datasets: Inappropriate evaluation datasets refer to the use of unsuit-
able, non-representative, or limited test sets that fail to adequately represent the true complexities
of the studied tasks. Such test sets can provide misleading results, and offer an obscured, over-
optimistic, or pessimistic view of a model’s realistic capabilities. Liu et al. [83] highlight the
frequent use of small, non-representive, and non-diverse datasets in code generation evaluations
that fail to capture real-world software complexities. Specifically, the widely-used HS dataset [80]
comprises code from a single project, exhibiting poor diversity. The average code length in the
Django dataset [108] is a mere 33 characters, indicating limited program complexity. The CoNaLa
dataset [174] utilizes automatically extracted Stack Overflow questions instead of real software
requirements. In short, common benchmarks poorly approximate the complexities of realistic code
generation scenarios. In vulnerability detection, Liu et al. [84] highlight that most evaluations make
the assumption that training and test datasets are drawn from the same distribution. However, they
argue this assumption overlooks the continuous evolution of software vulnerabilities and projects,
leading to the Cross-Domain issue where test sets should contain novel vulnerabilities or projects.
Furthermore, Nong et al. [106] further reveal that vulnerability datasets like SARD [12] comprise
unrealistic synthetic examples, which exhibit smaller vocabulary, smaller program length, and
higher pattern frequency compared to real-world code. Zeng et al. [176] claim that the state-of-the-
art Just-in-Time (JIT) defect prediction tool, CC2Vec [50], was only evaluated on a limited dataset
with marginal improvements to demonstrate generalizability and scalability. Overall, common
benchmarks in code-based research utilize inappropriate test sets that fail to capture real-world
complexities, leading to unrealistic performance evaluation.
Low Reproducibility: Reproducibility is a fundamental requirement of scientific research to
verify the validity and generalizability of findings through consistent replication across settings [56,
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71]. However, LM-based research introduces specific challenges around efficiently storing big
data, communication between distributed clusters, algorithm implementation, and appropriate
software/hardware environments [60, 71]. Thus, low reproducibility in LM4Code significantly
impacts performance evaluation, affecting the generalizability and trustworthiness of findings. Zeng
et al. [175] conducted an extensive empirical study revealing reproducibility issues with pre-trained
LMs for program understanding and generation. As described in their study, multiple performance
comparison results can be reversed compared to original publications. For example, CodeGPT
incurred the largest variance across 5 clone detection runs under the benchmark BigCloneBench
dataset, able to outperform or underperform other models depending on the run. Although PLBART
reported a 0.7 F1 advantage over CodeBERT in the original paper, its min-max F1 variations of 0.84
make this finding questionable. Additionally, CodeBERT and PLBART’s defect detection accuracy
reversed between the original PLBART paper and the subsequent research by Zeng et al. [175]. Such
statistically significant variations could invert performance comparisons, thereby undermining
LM4Code’s trustworthiness.
Inappropriate Performance Measures: Inappropriate performance measures arise from a mis-
match between standardized metrics and the distinct challenges inherent to software engineering
tasks. Prior survey studies [51, 157] have shown widespread use of generic metrics like accuracy,
precision, BLEU, and Pass@k in LM4Code research. However, these metrics often provide an
incomplete view of model capabilities on code-based tasks, owing to the complex and multifaceted
nature of software engineering scenarios. For instance, Roy et al. [123] conducted an empirical
study with 226 human annotators and showed that popular metrics like BLEU and ROUGE are poor
reliable indicators of human judgment. This demonstrates how common metrics may not fully align
with code quality assessments. Additionally, when evaluating classification tasks like vulnerability
detection, reporting solely accuracy is insufficient, as true-positive and false-positive decisions
are not observable [14, 88]. Moreover, popular metrics like BLEU derived from natural language
processing overlook critical attributes of code. As a textual similarity metric, BLEU calculates
n-gram precision between generated and reference sentences. However, programming languages
contain many “trivially shared n-grams”, rendering BLEU ineffective at distinguishing actually
similar code from coincidental similarities [28]. As we discussed before, code-based tasks exhibit
multiple distinct challenges such as data imbalance, data snooping, execution correctness, and
exception handling. For example, despite high BLEU scores, CodeT5 generated code with only
6.4% compilation rate, indicating poor execution correctness [164]. Overall, it is critical to utilize
appropriate evaluation metrics in LM4Code research to provide a comprehensive and accurate
understanding of model performance.

Figure 8 presents the distribution of relevant literature across years, while Figure 9 summarizes
the distribution across different LMs. Between 2018 and 2023, there was a noticeable rise in the
number of papers, suggesting a growing focus by researchers on pitfalls in LM4Code during the
performance evaluation phase. Among the identified studies, inappropriate evaluation datasets
have the most mentions, with 19 studies, showing the difficulty in establishing representative
datasets of LM4Code for reliable model performance. Additionally, inappropriate performance
measures also garnered considerable research attention, with 6 identified studies. From Figure 9,
we can observe that Transformer-based models were most discussed, evidencing their increasing
adoption for SE tasks. In summary, these observations emphasize critical areas for improvement
to enable robust evaluation and unbiased analysis of capabilities as LM4Code evolves. Careful
consideration of evaluation datasets, metrics, and baselines will be integral to advancing progress
in the field.
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5.2 RQ2-Implications
Through a thorough examination of 29 relevant studies, our review has identified several pitfalls
present in current approaches to evaluating the performance of LM4Code. If left unaddressed,
these pitfalls can produce misleading or unrealistic results, skewing perceptions of how these
models might perform in real-world settings. In this section, we discuss the broader implications of
the identified evaluation pitfalls and their potential impacts on LM4Code research and practical
applications.
Performance Overestimation: Pitfalls during performance evaluation can lead to a concern-
ing overestimation of model capabilities, creating a misleading gap between reported metrics
and real-world performance. Key contributors include the use of inappropriate and unrealistic
evaluation datasets and improper performance measures misaligned with practical objectives.
Small and synthetic evaluation datasets often fail to adequately represent the true complexities
that models face in real-world code intelligence tasks. Yet these limited datasets yield seemingly
“perfect” metrics during evaluation. As Liu et al. [83] empirically showed, the capabilities of code
generation models are often overestimated due to the use of limited datasets. When evaluated on
the small Django [108] and HS [80] datasets, code generation approaches yielded strong BLEU
scores of 0.811 and 0.646 respectively. However, simply switching to a new and more practical
dataset led to a drastic BLEU score drop to 0.167, revealing how exaggerated initial metrics can be.
Similarly, performance metrics misaligned with practical objectives tend to provide an unrealistic
overestimate of capabilities. These inflated metrics collapse when models face the true complexities
of real-world deployment. As Ahmed et al. [3] showed, as the length of input tokens increases for
program repair tasks, the accuracy of language models can decrease substantially from 82.88% to
55%. While overall accuracy may seem high during evaluation, metrics fail to reflect significant
drops in certain practical scenarios. Furthermore, popular metrics like BLEU can fail to accurately
assess model capabilities, as demonstrated by Eghbali et al. [28]. Their analysis showed BLEU’s
shortcomings in distinguishing between a neural code generation model and a dummy model
that simply exploited common n-grams. Despite the dummy model producing low-quality code,
BLEU scored it equivalent to the neural model. This indicates BLEU’s inability to differentiate
between models genuinely solving complex tasks and those exploiting superficial patterns. Overall,
inappropriate evaluation practices systematically and significantly overestimate the capabilities of
LM4Code models, obscuring major gaps between reported metrics and real-world effectiveness.
More rigorous and realistic benchmarking is critical.
Compromised Reproducibility: The reproducibility of research findings through independent
verification is a fundamental requirement of the scientific process that allows reported improve-
ments to be validated and incrementally built upon [56]. However, our analysis reveals that per-
formance evaluation in LM4Code research may lack sufficient reproducibility. The proposed ap-
proaches frequently bypass consistent evaluation protocols, datasets, and implementation details,
making it difficult for others to replicate the experiments described in the literature and validate
their accuracy [175]. Furthermore, inconsistent performance across different runs or implemen-
tations obscures the reliability of findings, as initial results that appear promising frequently fail
to fully replicate in subsequent studies [175]. This phenomenon indicates that minor variances in
experimental conditions, which are rarely comprehensively reported, can significantly influence
outcomes. Limited methodological transparency through selective reporting of details further
inhibits reproducibility [63].
Misleading Benchmarks: Misleading benchmarks and exaggerated claims lead research com-
munities astray and substantially hinder actual progress [147]. For instance, evaluating models on
limited datasets or with improper metrics often amplifies perceived improvements beyond actual
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capabilities. However, identifying possible pitfalls remains an open challenge for future LM4Code
researchers to address. As Liu et al. [88] highlighted, the lack of appropriate baselines frequently
causes considerable gaps between reported and real-world performance. Promoting such flawed
evaluations through publications and conferences propagates unreliable techniques built on shaky
foundations. This questionable practice squanders precious community resources as researchers
may pursue exaggerated claims rather than meaningful progress. More alarmingly, it obscures
the path forward for meaningful innovation that solves real-world needs, as progress is measured
on inflated claims instead [147]. Ultimately, systemic misleading benchmarks threaten to steer
LM4Code research astray, leading the community away from impactful advancements. Establishing
rigorous and peer-validated standards for benchmarking to guide productive research directions is
an urgent need.

5.3 RQ3-Solutions
Given the pitfalls identified during the performance evaluation phase, it is essential to propose
solutions to address these challenges and optimize the evaluation process. We summarize the
existing solutions as follows.
Standardized and Realistic Benchmarks: Establishing robust and realistic benchmarks is critical
for rigorous performance evaluation in LM4Code research. Researchers should carefully select
appropriate baselines based on thorough literature analysis, opting for well-established approaches
tailored to specific code intelligence tasks. This enables comprehensive capability assessment.
Moreover, the community must collaboratively institute standardized benchmarks and protocols,
fostering consistent evaluation. For example, Liu et al. [88] highlight the need for establishing
straightforward and realistic baselines to ensure truthful evaluation outcomes. For specific tasks,
standardized task-specific benchmarks have emerged, such as VJBench proposed by Wu et al. [164]
for automated program repair. Such domain-specific benchmarks facilitate targeted capability
assessment. Furthermore, diverse benchmark datasets play a significant role in comprehensively
evaluating and advancing LM4Code. For instance, Lu et al. [92] introduced CodeXGLUE, a com-
prehensive collection that encompasses 10 SE tasks across 14 datasets. It provides a platform for
structured model evaluation and comparison across tasks using standardized baselines.
Enhancing Reproducibility: Inconsistent replication remains a key pitfall during performance
evaluation in LM4Code [60]. Some solutions to enhance reproducibility have been proposed.
At its core, it’s critical that code, datasets, and evaluation scripts are made publicly accessible,
echoing the call for open-source initiative and providing continuously maintained links to high-
quality replication packages [81]. Furthermore, reporting key statistical measures like variance,
confidence intervals, and significance quantifies stability across runs. Such transparency fosters
community collaboration, facilitating the validation of research outcomes and paving the way
for future scholarly advancements. Carefully controlling and reporting experimental conditions
like hardware specifications, software versions, random seeds, and tuning details significantly
influences outcomes [55]. Chen et al. [16] introduced a systematic approach to train reproducible
AI systems, with general criteria to evaluate reproducibility, and a unified framework to decrease
randomness.
Refined Performance Measures: Appropriate and comprehensive performance metrics are
critical for accurately evaluating model performance on complex code-related tasks. To address
the limitations of common generic metrics like BLEU and accuracy, researchers have proposed
more refined measures tailored to LM4Code challenges. Ren et al. [121] introduced CodeBLEU
to improve upon BLEU for assessing deeper semantic similarities in code generation tasks, while
Eghbali et al. [28] introduced CrystalBLEU for minimizing the noise from commonly shared n-
grams in programming languages. Given the runtime nature of programming languages, metrics
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like compilation rate and execution accuracy on test cases have also been used [164]. For specific
LM4Code tasks, domain-specific metrics can prove more reliable. For example, for test oracle
generation, Liu et al. [88] presented an evaluation metric named Found@K, which counts how
many bugs can be found if developers only check the top-K recommended test cases per bug. To
better capture complex code quality attributes, direct human assessment can complement automated
metrics, evaluating aspects like readability, conciseness, and correctness [24, 112]. Overall, more
refined, code-aware, and multifaceted performance measures aligned with practical goals provide a
more accurate and reliable model capability assessment.

Summary - Performance Evaluation

In the performance evaluation of LM4Code, we identify four pitfalls related to performance
evaluation, including inappropriate baseline, inappropriate evaluation datasets, low reproducibil-
ity, and inappropriate performance measures. From 29 relevant research studies, inappropriate
datasets and metrics receive much attention. Such pitfalls can lead to overestimated evaluation
and compromised reproducibility, misleading benchmarks for the future. To address this, tailored
solutions like standardized benchmarks, transparency, realistic assessments, and community
coordination are needed.

6 DEPLOYMENT AND MAINTENANCE
Systems based on advanced LM4Code, such as GitHub Copilot [40], Amazon CodeWhisperer [4],
and Microsoft IntelliCode [139], have already been deployed in real-world IDEs and have garnered
a large number of users. There exist various challenges when such LM4Code systems are deployed
in practice, like security threats and how LM4Code systems should be updated to adapt the rapidly
changing software practices. This section discusses pitfalls, implications, and current solutions
when deploying and maintaining LM4Code.

6.1 RQ1-Pitfalls
In our literature review, we identified 25 research papers involving the pitfalls of LM4Code de-
ployment and maintenance. This number of identified publications surpasses that related to other
stages, highlighting the fact that deploying and maintaining LM4Code presents a complex set of
challenges that have gained considerable attention from the research community.

Figure 10 and Figure 11 present the distribution of these 25 research studies over time and different
types of LLM4Code. From Figure 10, we can observe that there has been a significant increase
in the number of research papers focusing on the pitfalls in the deployment and maintenance
of LM4Code, especially in the past two years. The data presented in Figure 11 demonstrates a
significant preference for utilizing the Codex model for analyzing biases related to deployment and
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maintenance, which may be due to the fact that the widely used Github Copilot is based on Codex.
Moreover, large pre-trained models such as CodeT5, BERT, Codex, and GPT-2 appear to surpass
traditional LMs such as RNN and LSTM in terms of widespread use and popularity. These observed
patterns indicate a shift in research focus towards investigating the complexities of advanced
models when deployed in real-world contexts. In the subsequent sections, we will examine the
particular biases and issues that arise in regard to the development and maintenance of LM4Code.

Real-World Constraints: Evaluating LM4Code systems solely in controlled lab settings often
overlooks practical constraints and complexities of real-world deployment [6]. Although controlled
evaluations provide useful insights into the effectiveness of a model within specific settings,
they sometimes overlook the complexity and diversity of real-world deployments. It is important
to consider runtime and storage constraints when deploying an LM4Code system in the wild.
Svyatkovskiy et al. [140] mentioned that a reasonable upper bound of model size for an IDE plugin
is 50 MB. However, the size of LM4Code keeps increasing. For example, the popular LM4Code,
CodeBERT [34], has 125 million parameters and is 425 MB in size, which is way larger than the
suggestion by Svyatkovskiy et al. [140]. Recently proposed models are even larger. Considering
LLaMa, developed by Meta, its smallest version has 6.7B parameters [91]. Models that appear to
have good performance in a controlled setting may be resource-intensive or excessively large for
practical applications, especially in environments with limited computational power or storage
capacity [33].

Attack Threats: LM4Code systems face various threats from malicious attackers. Despite the
breakthrough capabilities exhibited by LMs, prior works have noted that the state-of-the-art LMs
are vulnerable to a variety of attack threats such as evasion attacks [95, 154, 185], backdoor attacks,
privacy attacks, etc. These threats can appear across the entire lifecycle of the model, from data
collection to model deployment. We identified a total of 17 research papers that specifically focus
on the analysis of security threats within the LM4Code system. Figure 10 shows that the number
of these studies has increased over the recent years. Our study employs the classification scheme
mentioned in Battita et al.’s work [11], which has identified a diverse range of attack types in
machine learning.

(1) Evasion Attacks: Evasion attacks (a.k.a. adversarial attacks) leverage adversarial samples [85,
185], which are carefully perturbed instances while appearing as regular and benign inputs to
the human observer. Yet, these small perturbations can mislead the trained LM4Code model to
produce incorrect predictions. As shown in Table 2, evasion attacks are a major concern, with
9 out of the 17 examined papers investigating them. Zeng et al. [175] thoroughly evaluated
eight different adversarial attack approaches (i.e., word importance rank, genetic algorithm,
random substitution) against widely-used LM4Code, including CodeBERT, GraphCodeBERT,
and CodeT5. Their findings emphasized the vulnerability of these models to semantics-
preserving adversarial samples. Interestingly, even simple random attack techniques showed
significant effectiveness in degrading pre-trained LM4Code.

(2) Poisoning Attacks: Poisoning attacks inject malicious examples into the training data, aiming
to manipulate the model’s behavior [11, 137]. This can lead the model to produce incorrect
or attacker-chosen outputs when certain triggers appear in the inputs [125]. Poisoning
attacks can be categorized into two main classes: untargeted poisoning attack and targeted
poisoning attack [146]. One special case of the target poisoning attack is the backdoor attack,
where adversaries carefully insert a distinct pattern into a subset of training samples to
embed a backdoor. When the pattern appears, the model produces pre-defined outputs (e.g.,
recommending vulnerable APIs). Otherwise, the model behaves normally. Table 2 lists six
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Category Percentage References & Details

Attack Objectives
Evasion attacks 59% [38, 48, 85, 158, 170, 175, 179, 180, 185]
Poisoning attacks 35% [74, 116, 125, 135, 137, 149]
Privacy/confidential attacks 6% [93, 105]

Attack Models
RNN-based (e.g., LSTM) 41% [38, 48, 125, 149, 179, 180, 185]
General Transformer 29% [38, 149, 158, 175, 185]
LLM (e.g., Codex and T5) 41% [74, 93, 105, 116, 125, 135, 137, 175]

Countermeasure-inclusive
Include 71% [38, 48, 85, 93, 125, 135, 137, 149, 170, 179, 180, 185]
Non-include 29% [74, 105, 116, 158, 175]

Table 2. Summary of Attack Threats in Reviewed LM4Code Papers

papers related to poisoning attacks, with all of them specifically focusing on backdoor attacks.
Among various code scenarios, three studies [135, 137, 149] target LMs-based code search
models, demonstrating that backdoor samples within code search tasks closely resemble
clean code and are not easily differentiated. Four studies [74, 116, 125, 137] focus on code
generation scenarios, demonstrating that attackers can manipulate code recommendations.

(3) Privacy Attacks: Privacy attacks refer to attacks aiming to infer the private information of
LM4Code, e.g., parameters of models that are hosted remotely and the model training data.
One such example is model stealing (a.k.a. model extraction) involves extracting knowledge
(e.g., hyperparameters, model architecture, and training data) from a trained model without
direct access to its parameters or training data [13, 110]. Adversaries use this technique
to ‘copy’ the functionality of a model, often by querying it repeatedly and analyzing the
outputs [110]. For example, Lukas et al. [93] delved into the risk of language models, like GPT-
2, leaking personally identifiable information. Yang et al. [171] found that simply extracting
20,000 outputs (each having 512 tokens) from CodeParrot [1] can produce over 40,125 code
snippets that are memorized from its training data. In addition, Niu et al. [105] introduced
and evaluated a semi-automated pipeline that employs a membership inference approach on
various code generation models like CodeParrot [1] and Polycoder [166]. By leveraging the
GitHub Search API’s hit rate as a distinguishing heuristic and incorporating human-in-the-
loop evaluations, they found that approximately 8% (43) of the prompts in the Codex model,
used in GitHub Copilot, resulted in privacy leaks.

Security Concerns in Generated Code: The outputs from LM4Code, i.e., generated code, will be
further used in other software systems. Consequently, the safety and robustness of the generated
code come under scrutiny. Several recent investigations have shown that LM-generated code can
contain vulnerabilities, emphasizing the need for rigorous validation and enhancement of their
outputs. Pearce et al. [113] analyzed the generated code of GitHub Copilot and identified security
vulnerabilities. The authors produced 89 different scenarios for Copilot to complete, resulting
in 1,689 programs. Alarmingly, they found approximately 40% of these to be vulnerable. Such
vulnerabilities arise because code often contains bugs, and given the vast quantity of unvetted code
that Copilot processes, the language model is prone to learning from exploitable and buggy code.

6.2 RQ2-Implications
According to the reviewed papers, the identified pitfalls and security concerns related to the
deployment and maintenance of LM4Code have significant implications for both researchers
and practitioners in artificial intelligence and software engineering. Next, we will describe the
implications in detail.
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Untrustworthy Results: Both the pitfalls from external attackers and internal drawbacks can
lead to untrustworthy outputs, requiring the developers to carefully review and test the generated
code. External attacks like evasion, poisoning, and backdoor attacks, can induce LM4Code systems
to demonstrate manipulated behavior, i.e., generating outputs specifically chosen by attackers. For
example, Schuster et al. [125] demonstrate that code completion models can be manipulated to use
unsafe encryption algorithms and deprecated security protocol so that the system built based on
these suggestions is vulnerable to further attacks. Aghakhani et al. [2] reveal that the backdoors in
code generation models can inject various insecure code, including Cross-Site Scripting (CWE-79),
Path Traversal (CWE-22), and Deserialization of Untrusted Data (CWE-502). Wan et al. [149] can
mislead the code search models to retrieve the code snippets containing malicious actions, such as
deleting specific files. Attackers can also provoke systems into producing unexpected predictions so
that the application behaves in an unintended way. For example, the adversarial attacks [170, 181]
against LM4Code Systems can lead to completely wrong predictions. Even without external attacks,
the model itself may also naturally generate untrustworthy results, which has been largely reported
in various studies. For instance, Pearce et al. [113] revealed vulnerabilities frequently present in
GitHub Copilot’s generated code. Furthermore, Lukas et al. [93] suggested LMs may inadvertently
retain or even leak portions of their training data, which raises concerns regarding unintentional
memorization of sensitive information. Niu et al. [105] investigated code completion models like
the popular Codex model leaking private information (e.g., passwords and addresses) through
generated outputs.
Copyright Infringement: Pitfalls in LM4Code deployment raise significant concerns regarding
copyright infringement and loss of intellectual property. Attackers might resort to model stealing,
effectively replicating the functionality of proprietary models without authorization [62, 78]. Li et
al. [78] demonstrate that imitation models can even exceed the performance of the victim model.
Additionally, when models are deployed on user clients, they face the potential threat of reverse
engineering. Zhou et al. [184] highlight that the on-device models may leak their confidential
information, such as hyper-parameters and weights. The risk of copyright infringement and
intellectual property theft not only undermines incentives to develop innovative models, but also
threatens the commercialization prospects and trustworthiness of the LM4Code industry.
Compromised Model Efficacy: In real-world practice, many constraints, such as latency, device
memory, and computational costs, need to be satisfied. On the one hand, it prevents some powerful
models from being deployed. For instance, Feng et al. [33] noted multiple malware detection models
are infeasible on mobile devices due to limitations in computational power, memory, and energy
consumption. Zhang et al. [182] highlighted that even standard CodeBERT requires extensive
resources for pre-training and fine-tuning before use, which may not be affordable for individual
developers. On the other hand, the performance of deployed systems may be compromised as a
trade-off. For example, to be deployed on the user devices, the models have to be pruned or distilled,
where considerable performance degradation can be observed [131, 132]. Furthermore, Ganesh et
al. [37] showed that while quantization and unstructured pruning can reduce model size, these
techniques alone do not improve runtime inference speed or memory usage during execution,
unless paired with specialized hardware or processing libraries. Therefore, while constraints exist
in real-world deployment that compels simpler models, such compromises often degrade model
performance, highlighting the need for techniques that can provide comparable accuracy with
greater efficiency.
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6.3 RQ3-Solutions
6.3.1 Improving Model Robustness. Improving model robustness is essential to defend against
evolving security threats targeting LM4Code systems. Here, we summarize some of the available
solutions that have been proposed to enhance the robustness of LM4Code models:
Adversarial Training: Adversarial training incorporates adversarial examples into training data to
improve model robustness against adversarial attacks. Regarding code comment generation, Zhou et
al. [185] demonstrated masked adversarial training can significantly enhance robustness while
retaining performance on normal test data. Zhang et al. [180] illustrated that adversarially trained
language models exhibit markedly reduced attack success rates (approximately 30%-40%). Moreover,
Henkel et al. [48] implemented robust optimization employing a semantics-preserving adversary,
and this approach outperformed standard data augmentation, optimally balancing accuracy on
clean samples with robustness to perturbations.
Inference with Self-repair: Self-repair is to let the model introspect and correct mistakes or
vulnerabilities in its own code. Delving into this, Olausson et al. [109] investigated to what extent
the GPT models can provide accurate feedback on the causes of code errors, validating the efficacy
of GPT-4’s self-repair capabilities. Moreover, Chen et al. [15] enhanced the self-repair process by
incorporating knowledge from human-written natural language feedback.
Domain Knowledge: Beyond the internal capability of the model, external aids with domain
knowledge can also be employed to address the challenges. For instance, Jain et al. [57] enhances
these LLMs by utilizing a post-processing step based on program analysis and synthesis techniques,
thereby improving the correctness of the syntax and semantics in code. Wei et al. [162] introduced
Repilot, a framework designed to further assist AI “copilots” (i.e., LLMs) by synthesizing more
valid patches during the repair process. Moreover, Johnson et al. [62] proposed Random Utility-
Driven Synthesis Under Uncertain Regions (R-U-SURE), a method that builds uncertainty-aware
suggestions based on a decision theory model of objective conditional utility, using random samples
from generative models as proxies for unobserved potential intents of end-users. Poesia et al. [117]
propose a framework to apply constraints on partial outputs to produce complete correct programs
without re-training or fine-tuning of the language model.
Train with Real-world Dataset: Directly learning from the real-world datasets helps the model
to better align with the user intention. For instance, Aye et al. [9] observed a significant decline in
the accuracy of Transformer sequence models when tested using real-world data from production
logs. Moreover, they demonstrated that training on real-world examples yields a more robust
model. However, there is a significant shortage of large-scale, real-world datasets, especially for
vulnerability. Nong et al. [106] suggest a promising alternative solution: using deep learning to
generate real-world samples.

6.3.2 Enhancing Computational Efficiency. To make full use of the limited resources, various
measures have been proposed.
Model Compression and Specialization: To enable the deployment of large language mod-
els in resource-constrained environments, model compression techniques have been widely ex-
plored [44, 118]. Shi et al. [132] introduced Compressor, which uses a genetic algorithm to guide
the simplification of pre-trained code models. This compressed models to significantly smaller sizes
with acceptable accuracy loss. In addition to compression, methods to specialize large language
models (LLMs) for specific tasks show promise. Parameter-Efficient Fine-Tuning (PEFT) effectively
adapts LLMs using limited task data. As Weyssow et al. [163] demonstrated, PEFT outperforms ap-
proaches like Incremental Curriculum Learning in reducing computational overhead and boosting
performance when specializing broad LLMs.
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Efficient Inference: Numerous inference optimization strategies have also been proposed. For
instance, Zhang et al. [182] adopted input simplification strategies like word dropout and frequency
filtering to simplify input programs. By focusing on the most informative tokens, computational
costs are significantly reduced. Additionally, Chirkova et al. [19] introduced a tokenization method
that reduces the average token length by 17% without any downstream performance loss. They fur-
ther demonstrated that a properly chosen tokenization can even enhance the model’s performance
by 0.5-2%. Furthermore, Svyatkovskiy et al. [140] unveiled an innovative neural completion model
by combining static analysis with granular token encoding. This model boasts a lean memory
footprint, consuming just 6 MB of RAM — a significant 19x reduction compared to previous models.
It can generate a single piece of code completion in a mere 8 ms and delivers an impressive 90%
accuracy rate for its top five suggestions.

6.3.3 Privacy and Copyright Protection. The ability of large language models to memorize and
reproduce training data raises critical privacy and copyright concerns. Thus, developing effective
protection for privacy and copyright has been widely investigated.
Privacy-preserving Techniques: The memorization and regeneration capabilities of large lan-
guage models raise critical privacy concerns that demand research attention. Some state-of-the-art
models like StarCoder employed human annotators to mask any personal information such as keys
and addresses present in the training data, in an effort to mitigate privacy risks [72]. In addition,
differential privacy techniques have emerged as promising strategies for mitigating privacy risks.
Lukas et al. [93] introduce a sentence-level differential privacy approach, which provides guarantees
under the assumption that records are unlikely to be duplicated. Their results show that while
helpful in reducing privacy leakage to a large extent, differential privacy alone cannot completely
eliminate risks. Further research into complementary privacy-preserving mechanisms is needed to
develop LM4Code that generates high-quality outputs while provably protecting user privacy.
Model Obfuscation: Obfuscating models by hiding their structure and parameters has been
proposed as a technique to protect against extraction attacks. Prior Research has shown that
attackers can easily craft white-box-like attacks against models on devices, even to the extent
of reversing their training data [53]. For example, Zhou et al. [184] developed ModelObfuscator
to apply techniques like model file obfuscation and model structure obfuscation. In model file
obfuscation, they utilized renaming, parameter encapsulation, and neural structure obfuscation
approaches, effectively obfuscating the data and structures of on-device models. model structure
obfuscation utilizes shortcut and extra layer injection, making reverse engineering harder. Although
model obfuscation has shown promise by Zhou et al. [184], it can increase library size, introducing
extra memory overhead and computation time. Further research is needed to balance security,
efficiency, and accuracy as model obfuscation techniques are applied.
Watermarking:Watermarking techniques can help protect model intellectual property. For in-
stance, Sun et al. [137] introduced CoProtector, which uses data poisoning to embed watermarks
into source code repositories. This ensures open-source code can’t be exploited by models while
providing a way to reveal watermark backdoors. However, CoProtector notably diminishes model
performance, making it hard to adopt broadly. In neural code completion, Sun et al. [136] pro-
posed CodeMark which embeds imperceptible user-defined watermarks into code. This traces code
utilization while meeting key watermark properties like harmlessness, verifiability, and robustness.
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Summary - Deployment and Maintenance

Based on 25 relevant studies, our literature review reveals three main pitfalls in deploying
and maintaining LM4Code systems: real-world constraints, attack threats, and generated code
containing security concerns. These pitfalls can lead to untrustworthy results, copyright infringe-
ment, and reduced model efficacy. Proposed solutions involve improving robustness through
adversarial training and error detection, enhancing efficiency via compression and optimized in-
ference, and protecting privacy and copyright through obfuscation and watermarking. However,
there remains a need for robust evaluation frameworks and techniques that balance security,
efficiency, and accuracy. The implications highlight that real-world deployment introduces
complex challenges for LM4Code systems.

7 DISCUSSION
7.1 Recommendations for LM4Code Research
Our systematic literature review reveals numerous pitfalls that can undermine the realistic per-
formance and real-world effectiveness of LM4Code systems. These pitfalls span the data, models,
evaluation, and deployment phases of the LM4Code lifecycle. LM4Code has become an increas-
ingly prominent research area, evidenced by the rapid increase in publications. A prior survey by
Hou et al. [51] uncovered 229 papers on large language models for software engineering between
2020-2023, while Wang et al. [157] uncovered 350 papers on deep learning for software engineering
between 2015-2020. However, our focused study on LM4Code pitfalls only identified 67 relevant
papers. This indicates that research attention to pitfalls in LM4Code is still insufficient, compared
to the overall research volume. Thus, future LM4Code research must not overlook the pitfalls when
applying LM4Code models to software engineering tasks.
Recognizing Existing Pitfalls. In this study, we summarized multiple common pitfalls associated
with LM4Code. These pitfalls, each with distinct implications, highlight the inherent complexities in
applying LM4Code to real-world software engineering problems. As our review results demonstrate,
pitfalls can introduce unrealistic performance evaluation, compromise model efficacy, and raise
security concerns. Thus, it becomes important for future LM4Code research to recognize and avoid
potential pitfalls when building LM4Code systems for SE tasks. To ensure trustworthy findings
of LM4Code research, it is essential to demonstrate effectiveness through a rigorous and reliable
experimental design that reflects real-world scenarios. Furthermore, although our review has
summarized common pitfalls, as previous surveys like Hou et al. [51] present, there exist more than
50 specific large language models tailored to over 55 software engineering scenarios. So while we
report general implications in some common settings using prevalent models, further investigation
is required to discern more specific implications in specific or unconventional scenarios.
Addressing Existing Pitfalls. Addressing the identified pitfalls is vital for advancing robust and
reliable LM4Code techniques. As our study reveals, solutions like data cleaning, model explainability,
optimized model design, and rigorous benchmarking have shown promise in mitigating certain
pitfalls. However, these solutions, although effective in specific contexts, may not be universally
applicable due to the complexity and ever-evolving nature of the software engineering landscape. A
coordinated effort by the community is required to establish guidelines and best practices that enable
mitigating pitfalls in data construction, model design, performance evaluation, and deployment.
Uncovering New Pitfalls. The dynamic nature of the LM4Code field means novel pitfalls will
likely emerge as techniques rapidly evolve. Specifically, the ever-evolving software engineering
landscape, increasingly complex codebases, and new LM4Code techniques provide fertile ground
for novel pitfalls to emerge. Thus, identifying emerging pitfalls is critical. The community needs to
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continuously analyze model reasoning, behaviors, and performance under realistic experimental
settings to uncover new pitfalls in a timely manner. For example, testing on diverse unexplored situ-
ations or probing model decisions via XAI techniques yield valuable insights. Through periodically
updating benchmarks, refining evaluation approaches, and incorporating real-world deployment
scenarios, we can ensure that we not only keep pace with the ever-evolving landscape, but also
recognize and mitigate new challenges.

7.2 Open Challenges and Research Directions
7.2.1 Improving Data Quality for LM4Code. The processes of data collection and labeling play
critical roles in the model construction, determining their efficiency, trustworthiness, and overall
performance [90]. With the emergence of large language models such as GPT-4 [111], the reliance
on massive data has increased significantly. However, as we have reviewed, there are numerous
obstacles and unanswered questions associated with these phases.
Volume vs. Quality. The increasing number and widespread use of large language models such
as GPT-4, underscore the inherent conflict between the quantity and quality of data. These models,
with their vast number of parameters, heavily rely on extensive datasets to achieve their remarkable
performance. For example, Codex [17], which is a variant of the GPT-3.5 framework introduced
in 2021, conducted training using a dataset that was sourced from 54 million publicly available
software repositories on the GitHub platform, resulting in a total data size of 159 GB. Yet, collecting
vast amounts of data, a process that is both time-consuming and labor-intensive, is not a “silver
bullet”; data quality is also important. Even with advanced large models, “garbage in - garbage
out” [86, 113]. Notably, even widely-used benchmark datasets like CodeSearchNet [54] have been
observed to contain considerable noise and errors, as highlighted in prior research [133, 138].
Over-reliance on volume can lead to models that are prone to biases, noise, and even adversarial
attacks. On the contrary, an excessive focus on data quality can inadvertently decrease the diversity
and richness of the dataset. Finding the ideal compromise between these conflicting requirements
offers an appealing opportunity for future investigation.
Automated Data Quality Assurance. As the implications of low-quality data, it is essential to
utilize high-quality datasets to develop LM4Code approaches. In the dynamic evolution environment
of software and language models, manually searching and examining extensive datasets for data
noise or errors is neither practical and efficient. As a result, there is an urgent need for automated
tools and frameworks that can assure and maintain data trustworthiness and quality, particularly for
LM4Code models. We can systematically discover and correct data noise, labeling errors, and other
anomalies, allowing models to train on robust and reliable datasets and ensuring their reliability
and efficiency in real-world applications.

7.2.2 Strengthening Robustness and Trustworthiness in LM4Code. LM4Code models are becoming
increasingly integrated into the software development lifecycle, influencing everything from code
generation to vulnerability detection. Ensuring that these models are robust and trustworthy
is essential. This does not just relate to their prediction accuracy but extends to the reliability,
interpretability, and generalization capacity of the model, especially in diverse and evolving coding
environments [104, 156].
Building Interpretable LM4Code. The black-box nature of language models has been a long-
term concern, especially when LM4Code applications directly influence software development
outcomes [20, 141, 156, 161]. Transparency in LM4Code requires an in-depth examination of
the correlations and reasoning processes that models depend on, instead of just knowing the
model’s predictions. Our review results show that pitfalls can exist throughout the entire LM4Code
lifecycle, potentially resulting in spurious correlations. These misleading correlations are based on
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wrong artifacts for generating predictions, presenting significant challenges for practical real-world
applications. Although prior studies [21, 130, 150, 187] have introduced various explainable AI
(XAI) techniques into LM4Code, the current solutions lag behind the rapid evolution of language
models [94, 186]. Existing XAI techniques for LMs, in particular, only provide explanations as
either the contribution of individual words to the decision or the layer/neuron at which syntax
or semantics are encoded [186]. Although helpful, these explanations only offer a fragmented
picture of the model’s decision-making process, ignoring a considerable amount of its intricate
reasoning. As the complexity of language models grows, there is an imperative need to develop
more comprehensive and accessible XAI approaches for LM4Code.
Improving Robustness Against Errors and Threats. Recent literature [105, 116, 137] reveals
that state-of-the-art LM4Code models like Codex [17], GPT-3, and Starcoder [72] are susceptible to
inadvertent data errors and malicious threats. Such pitfalls not only degrade model performance,
but raise concerns about the security and trustworthiness of LM4Code systems. Improving model
robustness is therefore an urgent need to enable reliable LM4Code adoption.While prior studies [135,
137, 138, 179] have proven that techniques like adversarial training and data augmentation can
enhance robustness, more efforts should be spent by our research community to holistically defend
against newly emerging issues and threats. Specifically, possible solutions like domain-specific
preprocessing and learning, continuous evaluation, hybrid models, and anomaly detection should
be explored. Overall, a multilayered defense-in-depth strategy is essential to ensure LM4Code
reliability and trustworthiness against growing pitfalls or issues.
Adapting to Ever-evolving Code Environments. Within the ever-evolving field of software
development, new programming languages emerge, old ones get updated, and coding techniques
and habits are constantly transforming. Against this backdrop, a primary challenge for LM4Code is
ensuring the broad applicability and robust generalizability of LM4Code systems. Prior studies [106,
120, 145, 156] have highlighted the superior generalizability of advanced LMs over traditional
ML/DL techniques, particularly when it comes to previously unseen distributions. However, there
remain significant research gaps. Specifically, while the improvements in models like the advanced
Transformer are promising, they may not always translate to practical efficiency. For instance,
Thongtanunam et al. [145] indicate that while the Transformer demonstrates an improvement of
490% to 567% on new tokens, its accuracy remains around 10%, indicating a significant room for
improvement. Thus, the incorporation of domain-specific knowledge, continuous model updating,
and feedback loops with developers could pave the way for more adaptable and reliable LM4Code
solutions in an ever-evolving coding landscape.

7.2.3 Towards Reliable Performance Evaluation of LM4Code. Performance evaluation plays a key
role in demonstrating the efficiency and capability of the proposed LM4Code approaches. How-
ever, as discussed in Section 5, there are several pitfalls that can undermine realistic performance,
including inappropriate baselines, inappropriate test sets, reproducibility issues, and inappropri-
ate performance measures. Therefore, it is important to focus future research efforts on solid
benchmarks and rigorous evaluation methodology.
Towards Reliable and Standardized Benchmarks. It is important to establish a rigorous eval-
uation methodology supported by trustworthy and standardized benchmarks. These benchmarks
provide consistent frameworks for comparing different LM4Code approaches and set baselines for
new techniques [10]. However, our review results reveal that multiple pitfalls related to perfor-
mance evaluation like inappropriate baselines, limited test sets, and reproducibility issues distort
understanding of actual LM4Code capabilities, questioning research correctness [83, 88, 175]. For
example, Laaber et al. [69] emphasize the inherent benchmark instability, stressing the importance
of identifying and rectifying these instabilities to ensure accurate evaluations. Without addressing
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pitfalls, perceived model performance can become inflated, leading to potentially misleading con-
clusions. Related benchmarking challenges have been noted across various research domains like
computer security [147], and cloud computing [22, 126]. Hence, there is an urgent need to prioritize
the development of standardized, stable, and reliable benchmarks in LM4Code research. Future
research should focus on creating benchmarks that are both comprehensive and representative of
real-world scenarios. To achieve this, the community should coordinate on curating representative
test sets, establishing strong baselines, quantifying uncertainty, and promoting reproducible experi-
ments, ensuring that advancements in the field of LM4Code are grounded in robust and reliable
evaluations. This will not only foster trustworthiness within the research community but also drive
meaningful progress in LM4Code.
Towards Reliable Evaluation Metrics. As language models like GPT-4 grow in complexity, ac-
curately assessing their capabilities and limitations becomes imperative. However, as discussed,
traditional evaluation metrics, often borrowed from the NLP domain, may fail to capture the intrica-
cies and details that are crucial for code generation and understanding tasks [121, 124]. For example,
metrics like accuracy and BLEU focusing solely on syntactic correctness fail to account for potential
semantic errors with practical consequences, as noted by Fan et al. [30]. In addition, most studies
rely heavily on automated metrics, but human evaluation remains indispensable for assessing
the quality and utility of generated code [24, 112]. Additionally, the variability and uncertainty
inherent in generative models like GPT-4 need to be measured and analyzed in order to understand
reliability in real-world settings [111]. Therefore, developing holistic and standardized metrics
tailored to code intelligence tasks is urgently needed. These should measure syntactic validity,
semantic consistency, coherence, human quality judgments, and variability. For LM4Code to move
from impressing lab-only evaluation to transforming real-world applications, reliable evaluation
metrics are crucial.

7.2.4 Optimizing LM4Code Deployment for Real-World Scenarios. Realizing LM4Code’s potential
requires addressing deployment challenges in transitioning from controlled research to practice.
The integration, security, and scalability of LM4Code techniques become important considerations.
Integrating LM4Code into Developer Workflows and Tools. While modern LM4Code mod-
els like GitHub Copilot show potential for integrating AI-driven code suggestions into developers’
workflows, realizing this in practice presents unique challenges. First, it is crucial to ensure the
correctness and human comprehensibility of suggestions, especially since the generated code can
contain errors and vulnerabilities that may be problematic for real-world usage [100, 113, 116].
Additionally, customization and personalization are also important, since every developer has a
unique coding style and preferences. Modern LM4Code tools should be adaptable and learn from
individual developer behaviors to provide personalized code suggestions. Finally, integration with
developer tools like version control and debugging is critical for comprehensive functionality.
Future research should focus on addressing these challenges, ensuring that the integration of
LM4Code models into developer workflows is smooth, efficient, and beneficial.
Towards LM4Code Security. As discussed in Section 6, LM4Code faces several security concerns
that need to be addressed before responsible and ethical deployment can be achieved. These include
risks of evasion attacks, data poisoning, privacy leakage, and generated code potentially containing
vulnerabilities. Implementing comprehensive solutions is thus critical to safeguard models, data, and
users. Advancing the security of LM4Code requires continued research across multiple domains: (1)
Adversarial training techniques [185] can potentially increase model robustness against adversarial
inputs; (2) Employing formal verification approaches to evaluate the security and correctness of
generated code [113]; (3) Enhanced data construction and quality assurance processes are needed
to systematically identify and eliminate data poisoning, preventing the propagation of risks [125];
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(4) Approaches such as differential privacy [93] and federated learning [73] may strengthen pri-
vacy preservation in model training; (5) Watermarking and provenance tracking mechanisms can
enable authentication of model ownership and detect plagiarism or unauthorized use [65, 137]; (6)
Manual examination approaches including code reviews and human-AI collaborative interactions
are important. Substantial multidisciplinary efforts are critical to ensure the secure and ethical
development and deployment of powerful generative AI systems like LM4Code. This remains an
open research challenge requiring continued progress across communities.
Scalability and Latency Concerns. While powerful general large language models like GPT-
4 [111], PaLM [41], and Claude [5] offer public API access, privately deployed specialized LM4Code
models can face greater scalability challenges. Developing private models is important to customize
LM4Code systems to specific domains and tasks. However, large language models often comprise
billions of parameters, requiring massive computational resources [51]. This poses challenges
for real-time efficient integration into developer workflows. Reducing inference latency through
methods like knowledge distillation [132] and efficient attention [64] is crucial for reasonable
responsiveness. Additionally, scaling up throughput for concurrent users via cloud-native archi-
tectures is also essential. Optimizing memory utilization via compression and caching helps in
deploying large LM4Code models [132]. Energy-efficient deployment through quantization and
lightweight model distillation is likewise critical [43]. Tackling these scalability and latency issues
will be critical to realize LM4Code’s full potential through deployments that smoothly integrate
LM4Code into practical developer environments in a sustainable and user-friendly manner.

7.3 Threats to Validity
This systematic literature review was conducted according to the established guidelines [66, 178] to
mitigate potential threats to validity. However, there are still certain limitations primarily associated
with our search strategy and the data extraction process used for constructing our paper taxonomy.

One primary threat is selection bias, wherein the selection process may miss some relevant
research studies. First, one possible cause may be that some search engines may provide some
irrelevant studies or overlook some studies. Another reason could be that our keywords don’t cover
all the relevant research studies. With an emerging field like LM4Code, important ongoing work
may not yet be indexed in the primary digital libraries we searched. In addition, as we stated before,
pitfalls do not have consistent keywords or terminology, so our manual checking of the pitfalls
of LM4Code papers also has the potential for omissions. To minimize this risk, we systematically
performed the paper searching across six major digital libraries in computer science, manually
searched top venues, iteratively refined search strings based on a quasi-gold standard approach
defined by Zhang et al. [178], and conducted backward/forward snowballing. Moreover, each
manuscript that an individual author expressed uncertainty about regarding its including/excluding
underwent thorough discussion between the first two authors before making a final decision.

Another threat is internal validity in constructing our taxonomy of LM4Code pitfalls. A significant
contribution of this paper is developing a taxonomy to categorize and synthesize key pitfalls across
the LM4Code field. To mitigate subjectivity in our taxonomy, we adapted a framework from Arp et
al. [6] previously applied across computer security, which was collaboratively validated by the
first six authors with LM4Code expertise. At the same time, to enhance accuracy, each primary
study classification was reviewed by at least three authors, with disagreements resolved through
discussion. Despite the fact that multiple evaluators reduce the possibility of bias, subjective factors
persist. To improve the integrity of our taxonomy and offer transparency into our workings, all of
our collected research studies and their classification are available in our online repository.
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8 CONCLUSION
In this research study, we conducted a comprehensive and rigorous systematic literature review to
examine the pitfalls present in LM4Code. We utilized a well-defined systematic literature review
approach and finally obtained 67 relevant research studies from top-tier venues. We first provided
a taxonomy and we classified the existing pitfalls in LM4Code based on the various stages of the
LM4Code lifecycle, including data collection and labeling, system design and learning, performance
evaluation, and deployment and maintenance. For each stage, we provided a thorough review of the
relevant studies based on the pitfall types, implications, and existing solutions. Finally, we described
the current challenges and discussed the open opportunities that demand more study in this area.
We hope that our work will motivate other researchers, making language models enhanced for
code intelligence more reliable and trustworthy, thereby ensuring their effective deployment into
real-world applications.
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Figure 12. The overview of the review process.

A DETAILS FOR PAPER COLLECTION AND SELECTION
Since we explore the state-of-the-art research of the pitfalls within LM4Code, we first outline
our methodology for identifying relevant research studies, and then provide an overview of our
collected literature. We follow the rigorous methodology proposed by Kitchenham et al. [66, 68]
and Zhang et al. [178] to perform our lightweight Systematic Literature Review (SLR). The primary
steps in our systematic literature review can be summarized as follows: (1) planning the review and
formulating a review protocol, (2) proposing research questions, (3) designing search strategies and
proposing inclusion/exclusion criteria, (4) conducting a lightweight snowballing, (5) data extraction,
and (6) data synthesis. The outline for our review can be represented as presented in Figure 12.

A.1 ResearchQuestions and Motivations
In recent research, language models trained for code intelligence have shown promising perfor-
mance [51, 155, 175]. However, an increasing number of literature [101, 133, 138] has highlighted
the existence of pitfalls in LM4Code that can skew their realistic performance, leading to either
substantial overestimation or underestimation of their effectiveness. The aim of conducting this
systematic review is to gain an in-depth understanding of the pitfalls present in language models
tailored for code intelligence. Ensuring the robustness, reliability, and ethical deployment of such
models is important for their effective integration into the software development lifecycle. Con-
sequently, it is crucial to discern the nature of these pitfalls, comprehend their implications, and
examine existing solutions. Thus, we aim to answer the following research questions:

• RQ1: What types of pitfalls are prevalent in language models for code intelligence?
This research question aims to identify the prevalent pitfalls in LM4Code systems, exploring
how they could affect various stages of the learning-based system lifecycle.

• RQ2: What are the implications of these pitfalls? This research question investigates
the implications of the identified pitfalls, specifically focusing on their impacts on the effec-
tiveness, reliability, and ethical considerations of automated code intelligence systems.

• RQ3: What solutions have been proposed to address these biases and pitfalls? This
research question reviews the existing body of literature to pinpoint proposed approaches
for mitigating the identified pitfalls.
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Acronym Venues
ASE International Conference on Automated Software Engineering

ESEC/FSE Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
ICSE International Conference on Software Engineering

ISSTA International Symposium on Software Testing and Analysis
TOSEM Transactions on Software Engineering and Methodology

TSE Transactions on Software Engineering

Table 3. Publication venues for manual search

A.2 Search Strategy
To find out all potentially relevant research papers, we utilized the “Quasi-Gold Standard” (QGS) [178]
approach, which combines both manual and automated search strategies. Using QGS offers an
optimal balance between efficiency and research coverage, as evidenced in several previous
studies[27, 156]. As illustrated in Figure 12, our search strategy involved the following sequential
steps:
(1) Select appropriate publication venues for manual search and select digital databases for

automated search that encompass all the chosen venues.
(2) Establish QGS: Screen all papers for manual search and filter by inclusion/exclusion crite-

ria(defined in Table 3).
(3) Define search string based on domain knowledge from Language Models (LM) and Software

Engineering (SE).
(4) Conduct an automated search using the search keywords defined in Step 3.
(5) Evaluate the quality of included studies through QGS.
In our research approach, we integrated both manual and keyword-based search methodologies

to identify relevant papers. During the manual approach, we focused on six top-tier SE conferences
and journals, namely ICSE, ESEC/FSE, ASE, ISSTA, TOSEM, and TSE, all of which are CCF [32]
A-ranked venues in the software engineering domains (as indicated in Table 3). We systematically
crawled a list comprising 4,618 published papers from the top venues. After automating scanning
with scripts, we thoroughly verified and discovered 234 papers relating to LM4Code. These 234
relevant papers served as the foundation for developing the Quasi-Gold Standard (QGS) for the
following automated search. Our search string should include two sets of keywords: one for LMs
and another for code intelligence. Only if the paper contains both types of keywords does it have a
higher probability of being the one we require. The full list of search keywords is as follows:

• Keywords related to LMs: "LLM" OR "Large Language Model*" OR "Language Model*" OR
"LM" OR "PLM" OR "Pre-trained" OR "Pre-training" OR "Natural Language Processing"
OR "NLP" OR "Machine Learning" OR "ML" OR "Deep Learning" OR "DL" OR "Artificial
Intelligence" OR "AI" OR "Transformer" OR "BERT" OR "CODEX" OR "GPT" OR "T5" OR
"Sequence Model*" OR "Attention Model*" OR "Transfer Learning" OR "Neural Network*"
OR "ChatGPT" OR "GPT-*" OR "Deep neural network*" OR "DNN*"

• Keywords related to code intelligence tasks: "Software Engineering" OR "Software Develop-
ment" OR "Program*" OR "Software Testing" OR "Software Mainten*" OR "SE" OR "Software
Lifecycle" OR "Software Design*" OR "Code representation" OR "Code generation" OR "Code
comment generation" OR "Code search" OR "Code localization" OR "Code completion" OR
"Code summarization" OR "Method name generation" OR "Bug detection" OR "Bug local-
ization" OR "Vulnerability detection" OR "Testing techniques" OR "Test case generation"
OR "Program analysis" OR "Bug classification" OR "Defect prediction" OR "Program repair"
OR "Code clone detection" OR "Bug report" OR "Software quality evaluation" OR "SATD
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Inclusion Criteria

I1) Studies explicitly utilizing LMs.
I2) Studies claim that the study involves code-related tasks.
I3) Studies highlighting pitfalls, particularly emphasizing unrealistic per-

formance evaluation or factors that negatively influence performance
in LM4Code.

Exclusion Criteria

E1) Studies whose full-text is inaccessible.
E2) The study whose number of pages is less than 8.
E3) Redundant or nearly identical studies from the same authors.
E4) Papers not written in English.
E5) Systematic literature reviews, reviews, or surveys.
E6) Studies from workshops, doctoral symposiums, books, theses, mono-

graphs, keynotes, or panels.
E7) Non peer-reviewed academic literature.
E8) Studies not related to language models or code intelligence.
E9) Studies emphasizing LM4Code without discussing pitfalls related to

realistic performance.
E10) Studies with a primary focus on cyberattacks or Operating Systems.
E11) Studies that are published in a journal or conference with a CORE [122]

ranking of less than A.

Table 4. Inclusion and Exclusion Criteria

detection" OR "Code smell detection" OR "Compiled-related" OR "Code review" OR "Software
classification" OR "Code classification" OR "Code change" OR "Incident detection" OR "Re-
quirement extraction" OR "Requirement traceability" OR "Requirement validation" OR "Effort
cost prediction" OR "Mining GitHub/Github mining" OR "Mining SO (StackOverflow)/SO
mining" OR "Mining app/App mining" OR "Mining tag/Tag mining" OR "Developer-based
mining"

It’s important to highlight that our list of keywords is specific to LM4Code, and we intentionally
omitted keywords that are related to pitfalls during the paper search process. The reason behind
this derives from the ambiguity around the term “pitfalls”, which is open to various interpretations.
We decided to rely on our rigorous inclusion/exclusion criteria because it is difficult to precisely
categorize the types of pitfalls that exist within LM4Code, which is also the main motivation behind
this taxonomy study. We were able to include relevant papers with this methodology, even if they
didn’t explicitly mention “pitfalls” in their content.
After establishing the search string, we proceeded to conduct an automated search across

six widely used databases to ensure comprehensive coverage of all relevant published papers.
Specifically, our search spanned four major academic publishers: ACM Digital Library, IEEE Xplorer,
Springer, and Science Direct. Additionally, we included two renowned indexing databases: DBLP
and Web of Science, which indexes several other smaller academic databases. Similarly to previous
studies [23, 156], we did not use other search engines like Google Scholar due to the existence of
excessive irrelevant information in the search results and the requirement for subjective criteria
to choose when to stop the search process. Finally, we obtained 7,122 papers from the ACM
Digital Library, 1,681 papers from IEEE Xplore, 71,653 papers from Springer, 44,158 papers from
ScienceDirect, 44,158 papers from Web of Science, and 1,461 papers from DBLP.
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A.3 Study Selection
From among the papers collected by the paper search process, we attempted to select any research
study that focused on the pitfalls of LM4Code. As we discussed before, we define these “pitfalls” as
any significant issues or constraints present within the datasets, model architectures, experimental
designs, or even model deployment that could potentially undermine the reliability or realistic
performance of the proposed LM4Code systems. The inclusion/exclusion criteria we adopted,
shown in Table 4, were inspired by similar studies [23, 87, 119]. It is noted that to maintain a reliable
taxonomy of the pitfalls of LM4Code based on high-quality research studies, we removed the studies
published in low-quality venues: venue ranking below A using the CORE ranking system [122].

To determine whether the studies met the inclusion requirements, we combined thorough manual
assessment with automated script filtering. The study selection process involves six distinct stages,
as illustrated in Figure 12. The first two stages (filtering and deduplication) used automated scripts,
substantially reducing the initial set to 13,070 papers. Subsequently, in stages three and four, we
applied the inclusion/exclusion criteria, delving into the titles, abstracts, keywords, and publication
venues of each paper. It led to a sharp reduction in the number of remaining papers, leaving us with
838. The primary reason for exclusion was the lack of keywords correlating with both language
models and code intelligence. Furthermore, we dismissed 890 papers classified as grey literature or
misaligned with our main focus, as well as 105 systematic literature review articles to maintain our
emphasis on the pitfalls associated with LM4Code tasks. In the fifth and sixth stages, every paper
underwent a manual evaluation for relevance and Quality Assessment (QA), which led to the final
selection of 57 papers.
For SLRs, it is important to analyze the quality of collected studies to ensure that we form an

accurate and unbiased representation of the actual research [66]. Thus, we undertook the quality
assessment process using a pre-defined quality checklist. We established four quality assurance
criteria (QA1 to QA4) to reassess all selected papers.

• QA1. Are the pitfalls of LM4Code clearly described?
• QA2. Are the implications of the LM4Code pitfalls clearly stated or demonstrated?
• QA3. Is there a robust evaluation or solution for the identified LM4Code pitfalls in the
proposed methodology?

• QA4. Is the contribution of the research clearly stated?

We critically evaluate and rate each QA on a scale of 0 to 4 (with 4 denoting “high”, while 0 denoting
“low”). Then, we calculate the average quality score based on four quality criteria. We set the
threshold equal to 2.5 (50 percent of the percentage score), which means if the average quality
score of the research isn’t larger than 2.5, the study would be excluded.

A.4 Snowballing
In order not to miss some important work, we conducted a lightweight snowballing [67], which is a
commonly used search approach to complement automated queries. We executed both forward and
backward snowballing, incorporating references and citations into consideration. Specifically, each
primary study was examined for its references (backward snowballing) and its subsequent citations
using Google Scholar (forward snowballing). The set of 57 papers from the prior step served as
the initial set. From the forward and backward snowballing, we garnered 1003 and 1819 papers
respectively. Following the processes of merging, deduplication, and the removal of articles already
uncovered in our automated and manual searching, we ended up with a pool of 1611 papers. These
papers underwent the same study selection process, culminating in the identification of an extra 10
papers. As a result, we collected a total of 67 papers focusing on LM4Code pitfalls.
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(a) Distribution of papers over years (b) Distribution of papers across venues

Figure 13. Overview of papers

Figure 14. WordCloud of paper
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Figure 15. Distribution of papers across LMs

A.5 Statistics of Collected Publications
Figure 12 concludes the statistics of literature during our paper collection and selection process,
and we finally obtained 67 research studies related to our research focus. Figure 13 displays the
distribution of the collected research studies across the published year and published venues. From
Figure 13a, we have noted that there is a significant increase in the number of relevant research
studies published annually from 2021. Prior studies, such as Watson et al. [161] and Yang et al. [169],
have acknowledged the prevalence of language models in code-related tasks between the years 2014
to 2020. However, our results indicate that there has been limited attention given to the identification
and analysis of pitfalls in LM4Code. Nevertheless, Figure 13a shows a rising trend over the last three
years, indicating an increasing research interest within the research community about the potential
pitfalls in LM4Code. Figure 13b presents the distribution of the conferences and journals where
the collected papers have been published, spanning the Software Engineering (SE), Security (SEC),
and Artificial Intelligence (AI) domains. Some venues displayed in Figure 13a that aren’t listed in
Table 3 include: S&P (IEEE Symposium on Security and Privacy), ACL (The Annual Meeting of
the Association for Computational Linguistics), Usenix Security (USENIX Security Symposium),
SANER (IEEE International Conference on Software Analysis, Evolution, and Reengineering), and
ISSRE (The International Symposium on Software Reliability Engineering). It is noted that most of
our papers are from the SE domain, particularly from top-tier venues such as ICSE and ASE. Also,
we collected six papers from the top-tier SEC conferences: three from S&P and another three from
Usenix Security.
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SE activities SE tasks Total

Software development

Code Generation(14) Code Classification(3)

52
Code Summarization(12) Code Representation(2)
Code Search(9) Code Comment Generation(1)
Code Completion(5) Authorship Attribution(1)
Code Translation(4) Named Entity Recognition(1)

Software quality assurance Vulnerability Detection(12) Test generation(1) 13

Software maintainance

Clone Detection(10) Duplicate Bug Report Detection(1)

28
Program Repair(7) Bug Report Summarization(1)
Defect Prediction(5) Bug-Fix Commit Identification(1)
Commit Message Generation(2) Bug Report Classification(1)

Table 5. Distribution of papers across SE activities

Figure 14 shows a word cloud generated from the abstracts of the collected papers, highlighting
that most of the prominent terms are associated with LM4Code. Figure 15 further presents the
distribution of language modes used in the collected paper. It is important to note that while both
LSTM and GRU are types of RNN, in this study, papers that only specify the use of RNN without
further detail are categorized under “General RNN”. Similarly, despite observing the utilization of
several popular transformer-based architectures such as CodeBERT, CodeX, and CodeT5, papers
that merely claim the use of a self-defined or custom-designed transformer are classified as “General
Transformer” in subsequent sections. As depicted in Figure 15, it is evident that the LSTM model
has a higher prevalence compared to other types. In the past two years, there has been a significant
increase in research inquiries focused on transformer-based language models, specifically targeting
pre-trained models like CodeBERT and Codex. These observations are consistent with previous
survey studies related to learning-based software engineering [51, 155, 161]. Table 5 presents a
summary of the distribution of SE tasks that the collated papers address. Notably, tasks such as code
generation, code summarization, code search, vulnerability detection, and clone detection emerge
as the dominant scenarios for investigating the pitfalls in LM4Code. These primarily encompass
classification tasks, as well as code or text generation challenges in LM4Code.

Overall, our analysis underscores that LM4Code has been an increasing area of interest. Partic-
ularly, since 2021, there has been an increasing amount of literature emphasizing the pitfalls of
LM4Code. These pitfalls may hinder realistic performance and can affect how reliable and practical
LM4Code systems are in real-world situations. Our collected papers cover a wide range of language
models and many different software engineering tasks. As we delve deeper into our primary topic
in the subsequent sections, this preliminary overview sets the foundation for a comprehensive
analysis of the challenges and opportunities in LM4Code.
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