
Code Implementation Recommendation for Android GUI
Components

Yanjie Zhao
Monash University
Melbourne, Australia

Li Li∗
Monash University
Melbourne, Australia

Xiaoyu Sun
Monash University
Melbourne, Australia

Pei Liu
Monash University
Melbourne, Australia

John Grundy
Monash University
Melbourne, Australia

ABSTRACT
We present a prototype tool Icon2Code, targeted to helping app de-
velopers more quickly implement the callback functions of complex
Android GUI components by recommending code implementations
learnt from similar GUI components from other apps. Given an icon
or UI widget provided by designers, Icon2Code first queries a large
pre-established database to locate similar icons that other apps
have utilized. It then leverages a collaborative filtering model to
suggest the most relevant APIs and their usage examples associated
with the intended behaviours of these icons. Experimental results
on 5,000 randomly selected real-world apps show that Icon2Code
is useful and effective in recommending code examples for imple-
menting the behaviours of complex GUI components. It has over
50% of success rate when only one recommended API is taken into
account, and over 94% of success rate if 20 APIs are considered. The
video demo can be found at https://youtu.be/pM3ZBGrQTdQ.

KEYWORDS
Android, App Development, Collaborative Filtering, Icon Imple-
mentation, API Recommendation
ACM Reference Format:
Yanjie Zhao, Li Li, Xiaoyu Sun, Pei Liu, and John Grundy. 2022. Code Imple-
mentation Recommendation for Android GUI Components. In 44th Interna-
tional Conference on Software Engineering Companion (ICSE ’22 Companion),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3510454.3516849

1 INTRODUCTION
More than 3.48 million Android apps are currently available on
the Google Play store [26]. This number will continue to grow
significantly. Users have many choices from the enormous number
of downloadable Android apps, and developers need to develop
and refresh their apps promptly [14, 16, 30]. Managing a short
release cycle is not easy for developers because they are often under
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516849

pressure to fix vulnerabilities [5], solve compatibility issues [2, 12,
13, 29], and learn new development methodologies, libraries, and
the most recent technologies [15, 28, 31]. To assist them, researchers
have proposed many approaches to ease the development work of
developers [7, 9–11, 19, 27].

Unfortunately, to the best of our knowledge, no existing ap-
proaches have been proposed to support the code implementation
for the GUI component event handlers of Android apps. A GUI
is a common feature of all mobile apps, which are event-centric
programs that provide a rich graphical user interface to interact
with the users [17]. Since managing the complex and intertwined
callback events from user interaction usually requires a lot of coding
and debugging work [27], this increases the complexity of imple-
menting the mobile app GUI to some extent. Fortunately, developers
can implement the functionalities in callback methods with the help
of functional APIs. Nevertheless, it is still a time-consuming and
labour-intensive task to accurately utilize proper functional APIs
to implement callback methods for feature requirements [27].

Based on the idea that similar GUI components are normally
designed to trigger similar application behaviour, we propose a
prototype tool named Icon2Code1 to learn similar GUI callback im-
plementations of other Android applications to help developers
effectively implement the callback methods of their own GUI com-
ponents. Icon2Code is intended to extract common implementations
to help app developers accomplish the development of interactions
driven by GUI components, e.g., the heart-shaped icon for like.
Icon2Code first uses static analysis to analyze existing apps and
build a mapping relationship from GUI components to the callback
methods associated with them. For each callback method, Icon2Code
extracts its call graph and collects all accessed APIs, including APIs
of third-party libraries. Finally, Icon2Code achieves the purpose
of recommendation based on a collaborative filtering algorithm.
Taking GUI components (i.e. icons) as input, Icon2Code outputs
code implementations learned from the apps containing similar
GUI components.

2 MOTIVATION
As stated by Chen et al. [3], GUI design and GUI implementation
are two autonomous activities in the process of developing the
GUI of an app. Since creating an intuitive interface with a good
user experience is critical to the success of an app in a competitive
market, a professional designer usually does the former. The latter
involves programming the GUI interface itself, such as the layout,
1The project is available at https://github.com/carol233/Icon2Code.

https://youtu.be/pM3ZBGrQTdQ
https://doi.org/10.1145/3510454.3516849
https://doi.org/10.1145/3510454.3516849
https://github.com/carol233/Icon2Code

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Xiaoyu Sun, Pei Liu, and John Grundy

Icons

Event: Click
Handler:
<com.himalayawellness.himalayakonnect.activities.
UserAppRoleChooserActivity: void onClick(...)>

Click event

2

1 3

API List

<android.content.Context:
getSystemService(...)>

<org.json.JSONObject:
put(...)>

<org.json.JSONObject:
toString()>

Figure 1: An example of icon-bound GUI components and icon-related event handler callback methods.

constraints, and user interaction processing of GUI widgets, e.g.,
what should happenwhen a button is clicked. Chen et al. [3] propose
a neural machine translator to convert GUI design images into
GUI skeletons, but they haven’t endeavoured to help developers
implement the user interaction handling code of GUI components.

Listing 1: Examples of API usages in the method (e.g., Node
2 in Figure 1) reached by the click event. The method has
accessed both Android APIs and third-party library APIs.
1 //Node 2

2 TelephonyManager telephonyManager = (TelephonyManager) this.

la.getSystemService("phone");

3 String str = telephonyManager.getNetworkCountryIso().

toUpperCase();

4 JSONObject jSONObject = new JSONObject();

5 jSONObject.put("isoccode", str);

6 new b(..., jSONObject.toString(), ...);

Figure 1 shows a typical GUI page extracted from the Android
app com.himalayawellness.himalayakonnect, which contains vari-
ous GUI components, also referred to as icons in this paper. After
these GUI components accept user inputs – such as clicking, sliding,
or other interactions – the app needs to respond accordingly. For
example, when a user clicks the Profile icon on the upper left, it
will switch to a new page that allows the user to set their profile
data. Callback methods are utilized to achieve these behaviour
changes driven by user input events. Each GUI icon should have at
least one event handling callback method. However, implementing
these callback methods is usually complicated, involving method
calls that access multiple Android APIs and possible third-party
libraries.

Listing 1 shows a simplified code example extracted from one
of the methods in the call chain (i.e., node 2) triggered by the call-
back method onClick. This single method accesses at least 3 APIs,
including Android official APIs and third-party library APIs. A call-
back associated with an icon may contain multiple such methods.
Furthermore, an app’s UI page may contain dozens of icons, which
makes it harder to implement and debug their related callback meth-
ods effectively [20, 25]. As far as we know, no existing approaches
are proposed to assist developers in implementing the complex
event-driven callback methods related to Android GUI icons.

3 ICON2CODE
Figure 2 shows an outline of our Icon2Code tool. It has three key
modules: (1) Database Construction Module (DCM), (2) Similarity
Calculation Module (SCM), and (3) API Recommendation Module
(ARM).

APKs
(2) SCM

Similarity Calculation
Module

Icon --> API
Mapping

(3) ARM
API Recommendation

Module
Icon

(1) DCM
Database Construction

Module

API
Candidates

List

Figure 2: The architecture of Icon2Code.

3.1 DCM: Database Construction Module
We recommend code implementations for GUI icons by learning
from the code implementations of existing apps that use similar
icons in their GUIs. To this end, the goal of the first module of
Icon2Code is to preprocess the Android apps to build a database
that maps icons to its specific code implementations. The code
implementations here ignore user-defined APIs or methods and
only include JDK, Android official APIs and third-party library APIs.
Figure 3 shows the working pattern of this module.

(1) Preprocessing

Icon-to-APIs
Database

(4) Database
Construction

Icon-to-Callbacks

(2) Code Analysis (3) Call Graph
Construction

Call GraphsCode + IconsAPK

Figure 3: The working process of the DCMmodule.

3.1.1 Preprocessing. The key objective of the first step is to pre-
process the Android APKs to extract useful information (e.g., the
icons) in preparation for further analysis. The Android application
package (APK) is a file format used to distribute and install ap-
plications on the Android OS. There are usually two major icon
forms in APKs: the vector defined by an XML file and the image

Code Implementation Recommendation for Android GUI Components ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

presented as an image file (e.g., PNG format). Since the former does
not come as specific images, we ignore it in this work and only
consider the latter. To improve the utility of the recommended code,
we should make the recommended APIs consistent with the target
SDK version of the target app. Therefore, when disassembling the
Android APKs, we extract the target SDK versions, e.g., the value
of targetSdkVersion, by parsing the manifest files.

Listing 2: Examples of using XML attributes to bind icons
with GUI components.
1 //Example 1: ImageView, android:src

2 <ImageView android:src="@drawable/next_btn"

3 android:id="@+id/nextBtn"

4 android:contentDescription="@string/

next_button_content_desc"

5 android:onClick="onClick"/>

6
7 //Example 2: Button, android:background

8 <Button android:background="@drawable/button_cancel"

9 android:id="@+id/cancel_btn"

10 android:text="@string/cancel"/>

3.1.2 Code Analysis. With static analysis techniques, this step
establishes a mapping between the icon-bound GUI components
and their corresponding callback method code that responds to user
interaction events. The first subtask of this step is to break down
how the icons are bound to the GUI components of the application.
The XML attributes in the layout configuration files of an app are
responsible for binding the icons to the GUI components, such
as the source of ImageView (i.e., android:src) and the background
of the Button (i.e., android:background) displayed in Listing 2 at
lines 2 and 8, respectively. Table 1 shows the list of such attributes
we have taken into account, which has already been leveraged by
other techniques [1]. After locating the GUI components bound

Table 1: The set of attributes liable for binding icons to GUI
components.

Attribute Explanation
android:src Set a drawable as the content of the view (e.g.,

ImageView).
android:background Set a drawable as the background of the view.

android:drawableRight Set a drawable to the right of the text.
android:drawableTop Set a drawable on top of the text.
android:drawableLeft Set a drawable to the left of the text.

android:drawableBottom Set a drawable below the text.
android:drawableEnd Set a drawable at the end of the text.
android:drawableStart Set a drawable at the start of the text.

to the target icons using XML attributes, the second subtask of
this step is to infer the callback methods associated with the GUI
components. Similar to the binding between GUI components and
icon files, developers can also define callback methods through
XML attributes. For example, in Listing 2, the callback method that
is triggered when the ImageView is clicked (i.e., onClick) is specified
by the attribute android:onClick (line 5). This type of static binding
can be resolved through the layout configuration files similar to
the first subtask.

Callback methods can also be bound dynamically in the pro-
gram code. For the same onClick callback method, rather than the
XML attributes (line 5 in Listing 2), developers can use the code

presented in Listing 3 to achieve the same goal. Although it is more
challenging to identify this type of binding in an Android APK, it
can be concluded from observation that in most cases, the callback
methods are added after the GUI components are created (e.g., find-
ViewById() in line 4). Finally we can map the icon to its dynamically
defined callback method(s) by statically linking the information
obtained through these two subtasks.

Listing 3: An example of dynamically defining an icon’s event
handler (i.e., callback method) through program code.
1 public class MusicWallpaper extends Activity implements View

.OnClickListener {

2 public void onCreate(Bundle bundle) {

3 setContentView(R.layout.layoutlagu);

4 ImageView v = (ImageView) findViewById(R.id.nextBtn);

5 //Binding callback method to the icon

6 v.setOnClickListener(this);

7 }

8 @Override

9 public void onClick(View view) {

10 //This is the callback method

11 ...

12 }}

3.1.3 Call Graph Construction. Based on the previous step, we
collect the APIs accessed by the callback methods to map from
icons to their corresponding APIs invoked when the icon (GUI
component) receives user interaction input. Unfortunately, as our
motivating example illustrates, a given callback method can use
many other methods, and each can access a set of APIs, thus making
it not easy to gather the whole API set. We therefore construct a call
graph for each callback method viewed as an entry point, where
nodes represent methods and edges represent method invocations,
to ease the extraction of APIs.

3.1.4 Database Construction. For the mappings between icons pre-
viously obtained and the API sets accessed by traversing the call
graphs and extracting methods in the graphs, Icon2Code utilizes
these to generate a database, which is also the ground truth used to
support the following recommendation. Ideally, one way to improve
the reliability of the API recommendation approach is to use more
apps for training. In addition, Icon2Code further records complete
API usage examples (such as the code snippets shown in Listing 1)
into the database to support Icon2Code recommending API usage
examples to developers.

3.2 SCM: Similarity Calculation Module
Taking an icon as input, SCM aims to locate similar icons from the
pre-established icon → APIs database. To control the number of
most similar icons, a configurable parameter𝑚 is introduced, and
Icon2Code only selects the top-𝑚 most similar icons. Icons can be
associated with icon purpose-describing texts given by developers
in Android apps. Other than an immediate comparison between
icon images, we thus also leverage alternate text similarity to track
down the most similar icons.

Image Similarity Calculation.We employ three algorithms to
calculate the similarity between iconic images – Oriented FAST and
Rotated BRIEF (ORB) algorithm [22], Locality Sensitive Hashing
(LSH) algorithm [4], and the Histogram algorithm [6]. This hybrid
image similarity calculation method can reduce the random error

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Xiaoyu Sun, Pei Liu, and John Grundy

caused by a single method. Given two images 𝑝 and 𝑞, their image
similarity is measured via Formula 1, where the fusion similarity
threshold is assigned as 0.85. If the maximum similarity from the
three algorithms is greater than or equal to 0.85, the maximum is
taken as the final; otherwise, the minimum is considered the final.

𝐿𝑒𝑡 𝑀𝑎𝑥𝑠 =𝑚𝑎𝑥 (𝑂𝑅𝐵 (𝑝,𝑞), 𝐿𝑆𝐻 (𝑝,𝑞), 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 (𝑝,𝑞)),
𝐿𝑒𝑡 𝑀𝑖𝑛𝑠 =𝑚𝑖𝑛 (𝑂𝑅𝐵 (𝑝,𝑞), 𝐿𝑆𝐻 (𝑝,𝑞), 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 (𝑝,𝑞)),

𝑆𝑖𝑚𝑖𝑚𝑎𝑔𝑒 (𝑝,𝑞) =
{
𝑀𝑎𝑥𝑠 , 𝑀𝑎𝑥𝑠 ≥ 0.85
𝑀𝑖𝑛𝑠 , 𝑀𝑎𝑥𝑠 < 0.85

(1)

Text Similarity Calculation. We have determined three major
sources that furnish alternative text for iconic GUI components:
(1) S1: The icon’s reference name (e.g., given by android:src), of-
ten describing the function of the icon; (2) S2: The id name of the
view to which the icon is bound (e.g., given by android:id), often
portraying the function of the view hosting the icon; and (3) S3:
The alternative text defined by android:contentDescription or an-
droid:text, set to describe the function of the view. Take Listing 2 as
an instance – alternative texts {S1, S2, S3} of Example 1 are {next_-
btn, nextBtn, next_button_content_desc}. All three alternative of
these text values specify the icon’s purpose and are similar to some
degree. Edit distance is widely used to figure the similarity of two
text strings, by computing the minimum number of edit operations
demanded to alter one text into the other [21]. Levenshtein distance
is such a type of generally used edit distance [8], upon which two
texts’ syntactic similarity can be represented with the Levenshtein
ratio [23]. Given two texts 𝑎 and 𝑏, their Levenshtein ratio can be
calculated by Formula 2. For the two icons 𝑝 and 𝑞, their alternate
text similarity is determined by Formula 3, where 𝑝 ′ and 𝑞′ are the
according alternative text, and𝑤1,𝑤2,𝑤3 are the weights of each
type of alternative text, namely 𝑆1, 𝑆2, 𝑆3.

𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜 (𝑎,𝑏) = 1 − 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎,𝑏)
|𝑎 | + |𝑏 | (2)

𝑆𝑖𝑚𝑡𝑒𝑥𝑡 (𝑝′, 𝑞′) = 𝑤1 × 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑆1 (𝑝′, 𝑞′) +
𝑤2 × 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑆2 (𝑝′, 𝑞′) +
𝑤3 × 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑆3 (𝑝′, 𝑞′)

(3)

These two similarity calculation algorithms are aggregated to
calculate the overall similarity of two icons via Formula 4, 𝛼 and 𝛽

representing the weights of 𝑆𝑖𝑚𝑖𝑚𝑎𝑔𝑒 and 𝑆𝑖𝑚𝑡𝑒𝑥𝑡 , individually.

𝑆𝑖𝑚 (𝑝,𝑞) = 𝛼 × 𝑆𝑖𝑚𝑖𝑚𝑎𝑔𝑒 (𝑝,𝑞) + 𝛽 × 𝑆𝑖𝑚𝑡𝑒𝑥𝑡 (𝑝′, 𝑞′) (4)

3.3 ARM: API Recommendation Module
ARM aims to recommend suitable callback code APIs for the input
icon under development by learning from a set of similar app GUI
elements and their callback code implementations. We leverage
collaborative filtering [24] for our tool’s recommendation of API
usages. Collaborative filtering has usually been utilized to recom-
mend items for users to purchase dependent on their past shopping
records or other users’ records with similar buying practices. In
our Icon2Code tool, an icon plays the role of a user, and each API
plays the role of an item. A rating (e.g., a numerical value) is fur-
ther associated with a user and an item. The objective of ARM is
to recommend users (icons) a list of items (APIs) to purchase (to
access).

Relying on the𝑚 most similar icons collected by SCM module,
Icon2Code first calculates the number of APIs (𝑘) invoked by the
related callback methods of the𝑚 icons and models them into a
(𝑚 + 1) ∗ 𝑘 matrix. Table 2 demonstrates such an example, where

the selected𝑚 icons 𝑖1 → 𝑖𝑚 plus the one being edited 𝑖𝑒𝑑𝑖𝑡 are
represented as rows and APIs are represented as columns. For
the 𝑚 icons, each of their cells is assigned to either true (1) or
false (0) in the matrix, indicating whether the icon-related callback
methods have invoked the corresponding API or not. For example,
cell (𝑖1, 𝑎𝑝𝑖𝑘) is set to be 0, representing that callbacks of icon 𝑖1
has not invoked 𝑎𝑝𝑖𝑘 . For the icon being edited (i.e., 𝑖𝑒𝑑𝑖𝑡 in the last
row), all of its cells are initialized to unknown (-1). The objective
of this module is then refined to predict possible values for those
unknown cells. The cells assigned higher values, i.e., corresponding
APIs, will then be recommended for developers to implement the
icon-related callback method.

Table 2: An example encoding matrix.

𝑎𝑝𝑖1 𝑎𝑝𝑖2 ... 𝑎𝑝𝑖𝑘
𝑖1 1 0 1 0
𝑖2 1 1 0 1
... 1 1 1 0
𝑖𝑚 0 1 1 0

𝑖𝑒𝑑𝑖𝑡 -1 -1 -1 -1

The possibility of recommending a given API 𝑎𝑝𝑖 to 𝑖𝑒𝑑𝑖𝑡 is
computed via Formula 5 [24], where 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖𝑒𝑑𝑖𝑡) is the set
of the𝑚 most similar icons, 𝑠𝑖𝑚(𝑖𝑒𝑑𝑖𝑡 , 𝑖) is defined by Formula 4,
and ¯𝑟𝑖𝑒𝑑𝑖𝑡 and 𝑟𝑖 are the mean ratings of 𝑖𝑒𝑑𝑖𝑡 and 𝑖 , respectively. In
the implementation, 𝑟𝑖 and 𝑟𝑖,𝑎𝑝𝑖 are determined by the encoding
matrix. For example, for the encoding matrix in Table 2, 𝑟𝑖 can
be computed by measuring the average rating of the cells in the
row relating to 𝑖 . For ¯𝑟𝑖𝑒𝑑𝑖𝑡 , we assign its value to 0.8 following the
practice of Nguyen et al. [18]

𝑝𝑖𝑒𝑑𝑖𝑡 ,𝑎𝑝𝑖 = ¯𝑟𝑖𝑒𝑑𝑖𝑡 +
∑

𝑖∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖𝑒𝑑𝑖𝑡) (𝑟𝑖,𝑎𝑝𝑖 − 𝑟𝑖) · 𝑠𝑖𝑚 (𝑖𝑒𝑑𝑖𝑡 , 𝑖)∑
𝑖∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖𝑒𝑑𝑖𝑡) 𝑠𝑖𝑚 (𝑖𝑒𝑑𝑖𝑡 , 𝑖)

(5)

The output of Icon2Code is a list of Android API candidates that
are ranked by the scores returned from Formula 5.

4 EVALUATION
We have evaluated Icon2Code from four aspects and all of our ex-
periments leverage ten-fold cross-validation. First, we validated
the performance and effectiveness of Icon2Code on a dataset con-
structed with 47,827 icons extracted from about 5,000 randomly
selected apps. With default parameters (𝑚 = 20, 𝛼 = 1, 𝛽 = 0),
Icon2Code can achieve over 50% of the success rate when only
one recommended API is considered and it can reach over 94% if
the number is increased to 20. Second, we explored the impact of
changing the number of similar icons (i.e.,𝑚) by designing multi-
ple sets of experiments with different numbers of neighbours, i.e.,
𝑚 ∈ {5, 10, 15, 20, 25, 30} (𝑚 = 5 means that Icon2Code builds the
encoding matrix with five similar icons). The results show that on
our dataset,𝑚 = 20 is a suitable setting for Icon2Code. Third, we
explored the impact of different similarity calculation methods, i.e.,
the value of 𝛼 and 𝛽 defined in Section 3.2. We compared the de-
fault setting with another four settings with different weights, i.e.,
(0.8, 0.2), (0.5, 0.5), (0.2, 0.8), and (0, 1). Surprisingly, the text-only
setting shows the best performance, which shows that developers
can resort to using alternative texts to find good matching GUI

Code Implementation Recommendation for Android GUI Components ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

callback code suggestions. Finally, we explored the performance
of Icon2Code over different groups of training sets. We divided the
original training dataset into three groups: (1) All icons with no
more than five APIs accessed by their related callback methods, (2)
All icons with over five but no more than ten APIs accessed by their
related callback methods, and (3) All icons with more than 10 APIs
accessed by their related callback methods. Following the same
experimental setting, we further re-ran Icon2Code on the aforemen-
tioned three training groups, individually. Our new experimental
results suggest that expanding the quantity of APIs accessed by
icons selected for training improves the performance of Icon2Code
to some extent.

5 CONCLUSION
We have proposed a prototype tool Icon2Code to advise on APIs to
help implement the callback functions of iconic GUI components.
Icon2Code leverages icon images and their alternative texts to lo-
cate the most similar icons to the icon under development. It then
employs a collaborative filtering algorithm to get the output of the
recommended APIs and usage examples from existing apps.

ACKNOWLEDGEMENTS
This work is supported by ARC Laureate Fellowship FL190100035,
Discovery Early Career Researcher Award DE200100016, Discovery
Project DP200100020.

REFERENCES
[1] Vitalii Avdiienko, Konstantin Kuznetsov, Isabelle Rommelfanger, Andreas Rau,

Alessandra Gorla, and Andreas Zeller. 2017. Detecting behavior anomalies in
graphical user interfaces. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 201–203.

[2] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A Large-Scale Study of
Application Incompatibilities in Android. In The 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019).

[3] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From ui design image to gui skeleton: a neural machine translator to bootstrap
mobile gui implementation. In Proceedings of the 40th International Conference on
Software Engineering. 665–676.

[4] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253–262.

[5] Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé, and Jacques Klein. 2019.
Understanding the Evolution of Android App Vulnerabilities. IEEE Transactions
on Reliability (TRel) (2019).

[6] David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang. 2015. Hetero-
geneous computing with OpenCL 2.0. Morgan Kaufmann.

[7] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
2018. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Transactions on Reliability (2018).

[8] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[9] Bo Li, Qiang He, Feifei Chen, Xin Xia, Li Li, John Grundy, and Yun Yang. 2021.
Embedding App-Library Graph for Neural Third Party Library Recommendation.
In The 29th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2021).

[10] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Parameter
values of Android APIs: A preliminary study on 100,000 apps. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE, 584–588.

[11] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static Analysis
of Android Apps: A Systematic Literature Review. Information and Software
Technology (2017).

[12] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:
Automating the Detection of API-related Compatibility Issues in Android Apps.
In The ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2018).

[13] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
CDA: Characterising Deprecated Android APIs. Empirical Software Engineering
(EMSE) (2020).

[14] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre
Bartel, Jacques Klein, and Yves Le Traon. 2017. AndroZoo++: Collecting Millions
of Android Apps and Their Metadata for the Research Community. arXiv preprint
arXiv:1709.05281 (2017).

[15] Li Li, Timothée Riom, Tegawendé F Bissyandé, Haoyu Wang, Jacques Klein, and
Yves Le Traon. 2019. Revisiting the Impact of Common Libraries for Android-
related Investigations. Journal of Systems and Software (JSS) (2019).

[16] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. 2021. Identifying
and Characterizing Silently-Evolved Methods in the Android API. In The 43rd
ACM/IEEE International Conference on Software Engineering, SEIP Track (ICSE-SEIP
2021).

[17] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2018. Machine learning-based prototyping of graphical user
interfaces for mobile apps. IEEE Transactions on Software Engineering 46, 2 (2018),
196–221.

[18] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas
Degueule, and Massimiliano Di Penta. 2019. Focus: A recommender system
for mining api function calls and usage patterns. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). IEEE, 1050–1060.

[19] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen.
2015. Recommending API usages for mobile apps with hidden markov model. In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 795–800.

[20] Danilo Dominguez Perez and Wei Le. 2017. Generating predicate callback sum-
maries for the Android framework. In 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft). IEEE, 68–78.

[21] Eric Sven Ristad and Peter N Yianilos. 1998. Learning string-edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20, 5 (1998), 522–532.

[22] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[23] Sandip Sarkar, Dipankar Das, Partha Pakray, and Alexander Gelbukh. 2016. JU-
NITMZ at SemEval-2016 task 1: Identifying semantic similarity using Levenshtein
ratio. In Proceedings of the 10th International Workshop on Semantic Evaluation
(SemEval-2016). 702–705.

[24] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative
filtering recommender systems. In The adaptive web. Springer, 291–324.

[25] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: Beyond GUI testing
for Android applications. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 27–37.

[26] Statista Research Department. 2021. Number of apps available in leading app
stores as of 1st quarter 2021. (2021). https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/ [accessed 15-June-2021].

[27] Weizhao Yuan, Hoang H Nguyen, Lingxiao Jiang, Yuting Chen, Jianjun Zhao,
and Haibo Yu. 2019. API recommendation for event-driven Android application
development. Information and Software Technology 107 (2019), 30–47.

[28] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang
Liu. 2021. Research on Third-Party Libraries in Android Apps: A Taxonomy and
Systematic Literature Review. IEEE Transactions on Software Engineering (2021).

[29] Yanjie Zhao, Li Li, Kui Liu, and John Grundy. 2022. Towards Automatically Re-
pairing Compatibility Issues in Published Android Apps. In The 44th International
Conference on Software Engineering (ICSE 2022).

[30] Yanjie Zhao, Li Li, Xiaoyu Sun, Pei Liu, and John Grundy. 2021. Icon2Code: Rec-
ommending Code Implementations for Android GUI Components. Information
and Software Technology (IST) (2021).

[31] Yanjie Zhao, Li Li, Haoyu Wang, Qiang He, and John Grundy. 2022. API-
Matchmaker: Matching the Right APIs for Supporting the Development of An-
droid Apps. IEEE Transactions on Software Engineering (2022), 1–1. https:
//doi.org/10.1109/TSE.2022.3146831

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/10.1109/TSE.2022.3146831
https://doi.org/10.1109/TSE.2022.3146831

	Abstract
	1 Introduction
	2 Motivation
	3 Icon2Code
	3.1 DCM: Database Construction Module
	3.2 SCM: Similarity Calculation Module
	3.3 ARM: API Recommendation Module

	4 Evaluation
	5 Conclusion
	References

