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Fragmentation is a serious problem in the Android ecosystem, which is mainly caused by the fast evolution of the system itself and
the various system customizations. Many efforts have attempted to mitigate its impact via approaches to automatically pinpointing
compatibility issues in Android apps. We conducted a literature review to identify all the currently available approaches to addressing
this issue. Within the nine identified approaches, the four issue detection tools and one incompatible API harvesting tool could be
successfully executed. We tried to reproduce them based on their original datasets, and then empirically compared those approaches
against common datasets. Our experimental results show that existing tool capabilities are quite distinct with only a small overlap in
the compatibility issues being identified. Moreover, these detection tools commonly detect compatibility issues via two separate steps
including incompatible APIs gathering and compatibility issues (induced by the incorrect invocations of the identified incompatible
APIs) determination. To help developers better identify compatibility issues in Android apps, we developed a new approach,AndroMevol,
to systematically spot incompatible APIs as they play a crucial role in issue detection. AndroMevol was able to pinpoint 397,678
incompatible APIs against the full history of the official Android framework and 52 customized Android frameworks spanning five
popular device manufacturers. Our approach could enhance the ability of the state-of-the-art detection tools by identifying many
more incompatible APIs that may cause compatibility issues in Android apps and foster more advanced approaches to pinpointing all
types of compatibility issues.

CCS Concepts: • Software and its engineering → Software testing and debugging.
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1 INTRODUCTION

Fragmentation has been a severe problem for the Android ecosystem for years. “Fragmentation” refers to the fact that
there is a massive number of Android devices manufactured by different companies running different Android operating
system versions, including both official and customized ones. This introduces inconsistencies in that certain apps can
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only function properly on devices running specific Android versions with certain device features (i.e., the apps crash or
don’t work properly on different devices), leading to so-called app compatibility issues, short for compatibility issues in
the paper, which include forward compatibility issues and backward compatibility issues [45]. The typical forward
compatibility issue refers to API deletion in newer Android releases. An Android app will not function properly in
newer Android releases due to the invocations of such removed APIs. On the contrary, the backward compatibility
issue implies new APIs have been added in newer releases. An Android app will not function properly on older releases
if its implementation utilizes such added APIs.

Compatibility issues have been considered one of the most severe problems in the rapidly and constantly evolving
Android ecosystem. They can be induced by incorrect invocations of APIs, which we call API-related, or incorrect
permission acquisition, non API-related [26]. On the one hand, they negatively impact the users’ experience, as apps
with compatibility issues may not be able to install on users’ devices or may crash at runtime. On the other hand, they
also increase the difficulties of developing apps. The vast number of device-Android version combinations create many
technical complexities for developers and testers, which are non-trivial and yet expensive to resolve without a proper
infrastructure in place.

To address these issues, we focus on API-related compatibility issues. There has been a significant amount of research
in analyzing the compatibility issues induced by incorrect API invocations in Android apps. In the area of static analysis,
researchers have proposed various automated approaches to pinpointing one of the most common compatibility issues:
evolution-induced compatibility issues,. These refer to Android apps implementing and functioning properly on certain
versions of official Android systems but not on others as of provision of certain Android APIs on these systems. For
example, Li et al. [45] have designed and implemented a prototype tool called CiD that mines the evolution of the official
Android framework codebase to locate evolution-induced incompatible Android APIs, i.e., new methods introduced
in or existing methods being removed from the latest framework versions, and detects compatibility issues via static
analysis approach based on these identified incompatible APIs. He et al. [32] also introduced a detection tool called
IctApiFinder to detect evolution-induced compatibility issues. They first harvested incompatible APIs by extracting
APIs from the released Android SDKs from version API level 4 to API level 27 and determining if there are Android APIs
newly added or deleted, called incompatible APIs, in a newer released version, and then detected compatibility issues
(induced by the incorrect invocations of these incompatible APIs) with their static analysis implementation. Wei et
al. [72] have proposed a prototype tool called Pivot for characterizing device-specific incompatible APIs, e.g., APIs that
are available for certain devices but not for others. Huang et al. [34] deeply explored the compatibility issues caused
by the evolution of callback APIs, and proposed CIDER, which utilizes a graph-based model to detect API callback
compatibility issues. We refer to different types of compatibility issues according to the incompatible APIs causing such
issues, such as callback methods induced compatibility issues [34] and evolution-induced compatibility issues [32, 45],
etc.

Although related work has attempted to tackle compatibility issues, it has not yet been entirely clear what the
strengths and weaknesses of state-of-the-art tools are and to what extent they are able to identify different types of
compatibility issues in real-world Android apps. Furthermore, it is also unknown to which extent we can reproduce
experimental results from related work and how well each of the tools compares with each other in terms of detecting
different kinds of compatibility issues. In this work, we formulate these concerns into three research questions that we
aim to answer through empirical evidence and experimental results. Our three research questions are summarized as
follows:
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Automatically Detecting Incompatible Android APIs 3

• RQ1: What is the state-of-the-art tool performance in Android compatibility issues detection?
We answer this question through a systematic literature review, aiming to identify the primary studies relevant
to statically detecting Android app compatibility issues. Our review identified nine primary publications that
have proposed automated approaches for characterizing Android app compatibility issues. After careful analysis,
we summarize five identified types of API-induced compatibility issues: evolution-induced (method), evolution-
induced (field), device-specific (method), device-specific (field), and override/callback methods. Unfortunately,
none of the existing approaches can tackle all five types of API-induced compatibility issues. The most recent,
ACID [53], can only handle three out of the aforementioned five types of compatibility issues.

• RQ2: Can we replicate the experimental results yielded by state-of-the-art tools targeting compatibil-
ity issue detection?
Replicability studies are regarded as an essential method to confirm the reliability of existing research (including
both experiments and datasets). They are becoming an important focus in the software engineering community.
To answer our second research question, we confirm the reliability of existing state-of-the-art compatibility
issues detection tools by reproducing their experimental results with their original datasets. Our experimental
results show that the majority of these study results can indeed be reproduced. The remaining small number of
inconsistent results (yielded by IctApiFinder and FicFinder) are mainly caused by updates of the tools (such as
dependency fixes) and apps (due to the unrecorded Github versions of the apps).

• RQ3: How well do the tools in issue detection compare with each other?
To answer this question we apply selected state-of-the-art tools on two common sets of benchmark apps: (1) 65
apps used by the authors of selected tools and (2) 645 apps selected from the AndroidCompass dataset [56]. Our
experimental results show that (1) compatibility issues detection approaches that achieve their purpose via
systematically harvested incompatible API rules (such as CiD and IctApiFinder) can identify significantly more
issues than those having their rules summarized manually, and (2) the intersection among the results reported
by the selected tools is relatively small.

Our empirical study shows that typical compatibility issue detection involves two separate steps, including incompati-
ble APIs gathering and compatibility issue determination (induced by such incompatible APIs), which are all achieved by
the detection tools, CiD, IctApiFinder, CIDER, and FicFinder. To be more specific, compatibility issues in our paper refer
to the invocations of incompatible APIs without guard checks for specific Android versions and/or devices. However, we
empirically find that our community has not yet defined systematic approaches for identifying incompatible Android
APIs, including evolution-induced APIs and device-specific ones, and many incompatible APIs have been overlooked.
Even for the ones that can be detected, the intersection among the results given by the state-of-the-art tools, which
mainly focus on detecting compatibility issues induced by the evolution of official Android APIs, is also relatively small 1.
Since incompatible APIs play a crucial role in compatibility issue detection, we go beyond the state-of-the-art approaches
by presenting a new prototype tool for harvesting incompatible APIs. It is worth mentioning that the identified detection
tools (CiD, IctApiFinder, CIDER, and FicFinder, except for Pivot) are all issue detection artifacts. They not only gather
incompatible APIs but also pinpoint compatibility issues in Android apps. However, the approaches of harvesting
incompatible APIs utilized by these issue detection tools and Pivot are not systematic or evolution-induced oriented.
Our tool, named AndroMevol, advances the approach to gathering incompatible APIs by taking into account both the

1It is a rough comparison. We will discuss this better in threats to validity.
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fast evolution of the official Android framework and the system customizations made by different device manufacturers.
To evaluate the effectiveness of the approach, we further propose to answer two more research questions:

• RQ4: How well does AndroMevol perform in automatically identifying incompatible Android APIs?
We selected five popular Android brands (i.e., Huawei, Xiaomi, Oneplus, OPPO, and Samsung) and evaluated if
AndroMevol is capable of automatically generating a list of incompatible Android APIs, including methods and
fields, for helping researchers and developers pinpoint potential compatibility issues in Android apps. Using the
full history of the official Android framework and 52 customized Android frameworks extracted from devices
of popular brands. Our AndroMevol approach was able to report 397,678 incompatible APIs that do not exist in
all the considered platform versions.

• RQ5: How is AndroMevol compared with state-of-the-art approaches targeting automated collection of incom-
patible APIs?
To answer this research question, we compare our tool with other state-of-the-art approaches, CiD, CIDER,
IctAPIFinder, FicFinder, and Pivot, in harvesting incompatible APIs. Compared with these selected tools, our
AndroMevol approach can pinpoint many more incompatible APIs, enhancing the ability to detect compatibility
issues in Android Apps for the state-of-the-art issue detection tools.

This work extends our conference paper [51] by proposing to the community a new prototype tool called AndroMevol

to systematically harvest incompatible APIs. Our experimental results show that AndroMevol is effective in harvesting
incompatible Android APIs. It also outperforms state-of-the-art approaches by harvesting at least eight times more
incompatible APIs, including 195,883 APIs that have never been reported previously. Furthermore, we have updated the
Discussion and Related Work sections to cope with the aforementioned changes. The source code and datasets are all
made publicly available in our artifact package via the following link:

https://github.com/MobileSE/AndroMevol

In summary, the main contributions of this paper are:

• A systematic literature review across 19 top-tier venues to apprehend the status quo of compatibility issue
detection. We carefully read the targeted nine relevant papers from the selected top venues, summarized five
types of compatibility issues, and identified seven state-of-the-art detection tools to pinpoint such issues.

• A comprehensive comparative study to compare the ability of each identified detection tool. As the detection
tool ACID and ACRYL cannot be replicated and Pivot is developed only for incompatible APIs collection,
we could successfully replicate four detection tools, including CiD, IctApiFinder, CIDER, and FicFinder. To
measure the ability of the issue detection, we run the detection tools against two datasets. One is the original
dataset published along with the detection tools and the other is the dataset AndroidCompass, which contains
open-source Android projects collected from GitHub. Our evaluations on the original dataset demonstrated
that CiD outperforms the other detection tools by detecting more than one and ten times the number of
compatibility issues pinpointed by IctApiFinder and FicFinder, respectively. We also found that typical issue
detection approaches involve two separate steps, including incompatible APIs identification and compatibility
issue determination, and incompatible APIs play a crucial role in issue detection. To boost the ability of the
issue detection of the tools, a complete set of incompatible APIs is necessary.

• A systematic approach to harvesting incompatible APIs, including methods and fields, among five popular
OS brands, including Huawei, Xiaomi, Oneplus, OPPO, and Samsung alongside AOSP. We proposed the
new prototype tool called AndroMevol to harvest incompatible APIs from the official Android frameworks
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Automatically Detecting Incompatible Android APIs 5

and 52 customized Android frameworks extracted from the released ROMs of the five popular brands. With
the AndroMevol, we could collect a total of 397,678 incompatible APIs including 195,883 previously untouched
ones, which could be accessed by Android apps inducing compatibility issues. Compared to other API harvest
tools, AndroMevol performs better by harvesting at least eight times more incompatible APIs.

2 STATE-OF-THE-ART APP COMPATIBILITY DETECTION APPROACHES (RQ1)

We performed a systematic literature review to understand the current state-of-the-art in Android app compatibility
analysis approaches and available tools and datasets.

2.1 Literature Review

Figure 1 illustrates the working processes of our literature review, summarized based on the guidelines provided by
Kitchenham et al. [36] and Brereton et al. [24], as well as lessons learned from our own recent SLR practices [38, 52, 63, 78].

Keywords 
Identification

Repository 
Search

Paper 
Exclusion

Backward 
Snowballing

Primary
Studies

Objectives
Identification

Fig. 1. Overview of the literature review process.

Keyword Identification. To understand the status quo of incompatible app analyses, we use a set of keywords to
search for key relevant publications in popular repositories. The keywords we leveraged are essentially made up of two
groups (i.e., G1 and G2). Each group contains several keywords. The search string is then formed as a combination, i.e.,
g1 AND g2, where g1 and g2 are formed each as a disjunction of the keywords respectively from groups G1 and G2.

𝐺1 : 𝑎𝑛𝑑𝑟𝑜𝑖𝑑,𝑚𝑜𝑏𝑖𝑙𝑒, ∗𝑝ℎ𝑜𝑛𝑒∗
𝐺2 : ∗𝑐𝑜𝑚𝑝𝑎𝑡𝑖∗, 𝑑𝑒𝑝𝑟𝑒𝑐𝑎𝑡∗, 𝑖𝑠𝑠𝑢𝑒∗, 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
Repository Search. To focus our search, we applied these keywords on all the CORE2 A/A* ranked venues. This

keeps the review process lightweight while ensuring that important related works are not missed. In the software
engineering field (i.e., containing ‘software’ keyword in the venue title and falling in the following fields of research
code: 0803 for journals and 4612 for conferences), as summarized in Table 1, there are 19 venues (5 journals and 14
conferences) ranked as A/A* by CORE. These are all the top SE publication venues where high quality Android app
compatibility detection work is typically published. We then went through these 19 venues one by one and applied the
aforementioned keywords to search for relevant publications. Eventually, we were able to locate 44 publications across
13 venues (i.e., there is no relevant paper identified in 6 of the venues).

Paper Exclusion. As we aimed at collecting as many relevant papers as possible, we have simply considered all the
returned results. However, not every paper is related to automated Android app compatibility issue detection. We there
2https://www.core.edu.au/home
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Table 1. CORE A/A* ranked software engineering venues.

Type Source Venues
Journals CORE2020 TOSEM, TSE, EMSE, JSS, IST

Conferences CORE2021 ASE, ESEC/FSE, ICSE, EASE, ECSA, ISSRE, ESEM, ICSME, MSR, ICSA,
SANER, SEAMS, ICST, ISSTA

Compatibility issue 
detection

API inducedEmpirical study Other 
(e.g., UI, signing)

Device-specific
(Method)

Override/
Callback

Evolution-induced
 (Method)

Evolution-induced
(Field)

Device-specific
(Field)

Fig. 2. The category of the papers targeting compatibility issues on the Android platform.

go one step further to read the abstract (and full content if needed) of the obtained papers to only retain the closely
related ones by applying the following exclusion criteria: (1) Short papers (i.e., less than six pages in double-column
format or 11 pages in single-column format) are excluded. (2) Papers targeting non-Android mobile devices are excluded.
(3) Papers targeting Android but that do not concern compatibility issues are excluded. (4) Papers targeting Android
compatibility issues but that do not concern API-induced ones are excluded (categorized as Other in Figure 2). For
example, the work presented by Ki et al. [37], which proposes an automated testing framework for Android apps named
Mimic for characterizing UI compatibility issues, is excluded. Another work presented by Wang et al. [68], which has
discussed a type of app signing compatibility issue introduced by unsupported digest/signature algorithms, is also
excluded. (5) Papers targeting Android compatibility issues but that do not introduce automated approaches to detect
or resolve them are excluded (categorized as Empricial Study in Figure 2). For example, Nielebock et al. [56] contribute
an Android compatibility check dataset named AndroidCompass, which comprises changes to compatibility checks in
the version histories of the Android projects. Cai et al. [26] conduct a large-scale study of compatibility issues based
on Android apps developed over the past eight years to comprehend the symptoms and root causes. These papers do
not introduce a prototype tool to detect compatibility issues in Android apps and hence are excluded. After applying
these exclusion criteria, there are nine papers retained that are closely related to automated incompatible Android API
detection.

Backward Snowballing. Based on the papers identified in the previous steps, we conducted a backward snowballing
approach to ensure that important closely related papers (e.g., with titles not matching our search string or published
outside of the selected 19 venues) are not missed by our lightweight literature review. For each paper we carefully
read the related work part and attempted to find cited papers that are closely related to our study but have not yet
been included. This process did not help us identify any new papers, suggesting that the keywords and venues that we
selected to search for relevant publications are indeed the most relevant ones.
Manuscript submitted to ACM
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Automatically Detecting Incompatible Android APIs 7

Table 2. Full List of Collected and Examined Papers.

Tool/Reference Year Venue Tool availability
ACID[53] 2021 SANER Available [1]

ACRYL (extension)[62] 2020 EMSE Open Source [2]
ACRYL[61] 2019 MSR Open Source [2]
Pivot[72] 2019 ICSE Available [5]
CiD[45] 2018 ISSTA Open Source [3]

IctApiFinder[32] 2018 ASE Open Source [7]
CIDER[34] 2018 ASE Available [4]

FicFinder (extension)[73] 2018 TSE Available [6]
FicFinder[71] 2016 ASE Available [6]

Compatibility Issues
(bug reports, code snippets, commits)

Incompatible
APIs

(1) Data-driven approach for 
harvesting incompatible APIs

Program Analysis

Unknown 
Compatibility Issues

(2) Program Analysis 
for detecting unknown 
compatibility issues

Fig. 3. The typical working process of detecting Android compatibility issues.

2.2 Result

In total, our Systematic Literature Review (SLR) search process identified nine relevant papers (hereinafter referred to
as primary studies, which are listed in the first column of Table 2. The nine papers are collected from seven venues
with publication dates ranging from 2016 to 2021 (cf. second and third columns in Table 2). The last column describes
the availability of these tools. Some of them are open-sourced, while others are published as executable files on the
associated papers’ websites.

2.3 State-of-the-Art App Compatibility Analysis Approaches

After identifying the primary publications, we carefully read their full papers to understand how each of their automated
compatibility issues detection approaches is implemented. We then summarize the common working process taken by
those approaches to detect Android compatibility issues.

As shown in Figure 3, the objective is often achieved via two steps: (1) data-driven approach for harvesting in-
compatible APIs and (2) program analysis for detecting unknown compatibility issues. The output of the first step
will be a list of incompatible APIs, which will be taken as input to the second step. With the two typical steps of the
working process of compatibility issue detection, we summarized the collected tools as in Table 3. The second and
third columns describe incompatible APIs collection and issue detection per se separately. CIDER and FicFinder only
support issue detection while Pivot only focuses on incompatible APIs collection regardless of publicly available ones
or conventionally restricted ones. The remaining tools are working as a whole supporting both APIs harvesting and
issue detection.
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Table 3. Working Process Support of Tools.

Tool/Reference API Harvest Issue Detection
ACID[53] ✓ ✓

ACRYL (extension)[62] ✓ ✓
ACRYL[61] ✓ ✓

Pivot[72] ✓ %
CiD[45] ✓ ✓

IctApiFinder[32] ✓ ✓

CIDER[34] % ✓

FicFinder (extension)[73] % ✓

FicFinder[71] % ✓

After carefully reading their full content, we understand that compatibility issues stem from API inconsistencies
that are induced by the evolution of Android OS per se and different OS customizations. We, therefore, categorize
compatibility issues into five types as described in Figure 2 according to the different types of underlying inconsistent
APIs. For each of the considered tools, we further summarize and list its capabilities in Table 4. It is worth noting that
FicFinder does have the ability to detect device-specific methods-induced compatibility issues but the incompatible
APIs leveraged by the artifact are all evolution-induced ones. Therefore, we assume the artifact FicFinder could only
detect evolution-induced compatibility issues in the following discussion. Columns 2-6 describe the detection of the
five types of compatibility issues, which are further detailed with concrete examples as follows.

Table 4. Examination results of the approaches proposed in the retained primary studies.

Tool/Reference Evolution-induced Evolution-induced Device-specific Device-specific Override/ Systematic Fully automatic2

(Method) (Field) (Method) (Field) Callback (Sound)
ACID[53] ✓ ✓1 % % ✓ ✓ ✓

ACRYL (extension)[62] ✓ % % % % % ✓

ACRYL[61] ✓ % % % % % ✓

Pivot[72] ✓ % ✓ % % % ✓

CiD[45] ✓ % % % % ✓ ✓

IctApiFinder[32] ✓ ✓1 % % % ✓ ✓

CIDER[34] % % % % ✓ % %

FicFinder (extension)[73] ✓ % ✓ % % % %

FicFinder[71] ✓ % ✓ % % % %
1 Only mentioned but not illustrated in detail.
2 There is no human involvement in the core process, e.g., the learning/knowledge collection phase.

Evolution-induced (Method): The signatures 3 of some public methods are altered (i.e., removed, newly added, or
parameter type changes, etc.) during the evolution of the framework. Figure 4a demonstrates such an example, for
which the code snippet is initially reported in [32], where statements beginning with the + signs indicate a possible
fix for this incompatibility. The API startDrag() called on Line 7 is introduced into SDK after level 11. However, the
minSdkVersion of this app is set to 10. Consequently, if not protected with the “if-else” block, a “NoSuchMethodError”
exception will be thrown, leading to crashes on devices running SDK version 10.

Evolution-induced (Field): During the evolution of the framework, the signatures of some publicly accessible
fields could also be altered (i.e., removed or newly added). Unfortunately, apart from [32] and [53], none of the
other papers discusses such issues. Moreover, no relevant examples are given in all the research papers. Then we
use an example that we discovered throughout our research. There is an evolution-induced issue with a field called

3The method signature in our research and current related work refers to the combinations of the method return type, method name, and method
parameters type list.
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1 public class MainActivity extends Activity{
2 private TextView mView;
3 protected void onCreate(Bundle bundle) { ...
4 + if(Build.VERSION.SDK_INT >= 24)
5 + wrapper(mView, c, s, null, i);
6 + else
7 mView.startDrag(c, s, null, i);
8 }
9 + private wrapper(View v, ClipData c, ...) {
10 + v.startDragAndDrop(c, s, o, i);
11 + }
12 }

(a) Example 1: Evolution-induced(Method)

1 public static Bitmap getCachedArt(final Context context,
final Song song){

2 ...
3 Options options=new Options();
4 options.inDither=false;
5 options.inPreferredConfig=ARGB_8888;
6 ...
7 }

(b) Example 2: Evolution-induced(Field)

1 Camera mCamera = Camera.open();
2 Camera.Parameters params = mCamera.getParameters();
3 ......
4 + if (android.os.Build.MODEL.equals("Nexus 4") {
5 + params.setRecordingHint(true);
6 + }
7 ......
8 mCamera.setParameters(params);
9 mCamera.startPreview();

(c) Example 3: Device-specific(Method)

1 private static HttpClient getNewHttpClient() {
2 ...
3 sf.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);
4 ...
5 }

(d) Example 4: Device-specific(Field)

1 public void onAttach(Context context) {
2 super.onAttach(context);
3 − mActivity = (BrowserActivity) context;
4 − ......
5 + attachActivity((BrowserActivity) context);
6 }
7 + public void onAttach(Activity activity) {
8 + super.onAttach(activity);
9 + if (Build.VERSION.SDK_INT < 23) {
10 + attachActivity((BrowserActivity) activity);
11 + }
12 + }
13 + private void attachActivity(BrowserActivity activity) {
14 + mActivity = activity;
15 + ......
16 + }

(e) Example 5: Override/Callback

Fig. 4. Code Examples

"BitmapFactory.Options.inDither" at Line 4 of Figure 4b. It’s supported by API Levels 1 through 23, however, since API
Level 24, it’s been deprecated, creating compatibility issues when an app sets a target SDK version equal to or greater
than 24.

Device-specific (Method): Due to the customization of smartphone manufacturers, some APIs only work on some
devices but not on others. Figure 4c demonstrates such an example, originally reported by Wei et al. [72]. Only if
the result of the conditional statement for checking the device identifier according to “Nexus” is true, that is, the
corresponding app is indeed running on “Nexus”, the API setRecordingHint() on Line 5 will be executed.

Device-specific (Field): Similar to evolution-induced compatibility issues, the customization of Android frameworks
can also introduce incompatible fields (i.e., exist in some devices but not in others), referred to as device-specific
fields. No code example is provided in our reviewed primary papers, similar to evolution-induced (field). We then
take the example of "<org.apache.http.conn.ssl.SSL-SocketFactory: org.apache.http.conn.ssl.X509HostnameVerifier
ALLOW_ALL_HOSTNAME_VERIFIER>", as shown in Figure 4d. According to our analysis results, this field is not
supported by OPPO smartphones in the SDK of API Level 26, which account for more than 10% of global smartphone
shipments [8]. If an app that uses this field is installed and run on an OPPO smartphone with SDK version 26,
compatibility issues may arise.

Override/Callback: Due to the evolution of the Android framework, some callbacks may have been altered. Here,
the callbacks are methods defined by the framework that could be explicitly overridden4 by client Android developers,
and their execution will be triggered by the framework. Figure 4e demonstrates such an example excerpted from [34].
The onAttach(Context) callback method at Line 1 is introduced from API level 23. This callback method will not be

4Actually, all the methods that are declared as public or protected could eventually be explicitly overridden by client apps. In this work, we take all of
such methods into account and hence will not differentiate (and hence specifically emphasize) if the given method is a callback.
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executed if this code is run on a smartphone with an API level lower than 23. Thus it could cause the mActivity field
not to be initialized, and a “NullPointerException” may be thrown when using it.

The table shows that most of the tools are developed for detecting compatibility issues induced by the method
evolution of the Android system. For the field evolution-induced compatibility issues, ACID and IctApiFinder have
mentioned the issue in the corresponding papers but did not explain the issue in detail. Pivot and FicFinder also
considered compatibility issues induced by methods provided by specific devices, while none of the detection tools
examined compatibility issues resulted from fields carried by specific devices. For the independent issue induced by
the evolution of callback methods, CIDER is the only approach developed intentionally to handle this, while ACID
considered both evolution-induced and this special one. To summarize, unfortunately, none of these approaches have
considered all the identified types of compatibility issues. The most recent approach, ACID [53], can only handle three
out of the aforementioned five types, leaving device-specific issues unaddressed. It is also worth noting that the two
approaches, which have indeed taken evolution-based fields into account, have only mentioned this capability but do
not elaborate further with the support of experimental evidence.

Furthermore, in column 7 of Table 4, we further summarize whether the proposed approach involves a systematic
approach to harvest an incompatible API list (hence the results can be considered complete). As summarized in Table 4,
only three approaches (i.e., ACID, CiD, IctApiFinder) leverage a systematic approach to harvest incompatible APIs.
The majority of considered approaches only take ad-hoc approaches aiming at detecting as many compatibility issues
as possible without endeavoring to identify all the possible compatibility issues, i.e., the compatibility issues are not
discovered following a systematic approach aiming at covering all the possible cases. As an example, Scalabrino et
al. [61] present an automated compatibility issue detection approach called ACRYL, which leverages the knowledge
collected from changes implemented in other apps responding to API changes to achieve its purpose. Such an approach,
although implemented in an automated manner, cannot collect all the possible compatibility issues lying in the Android
ecosystem and thereby can unfortunately yield false-negative results.

Finally, the last column further highlights whether the proposed approach itself is fully automated or not. An
automated approach should not involve any manual efforts that may pose difficulties to replicate. Among the selected
nine approaches, six of them do provide automated ways to identify compatibility issues (i.e., misuse of incompatible
APIs) in real-world Android apps. Three approaches rely on manual efforts to achieve their objectives, making them
not extensible (at least in an easy way) to detect newly introduced compatibility issues. For example, Wei et al. [71, 73]
have empirically studied the fragmentation-induced issues to portray the symptoms and root causes of compatibility
issues and subsequently proposed a static-analysis tool named FicFinder to detect such compatibility issues. The major
limitation of FicFinder is the requirement of manual efforts to build the patterns of API/context pairs, which are
summarized from the aforementioned empirical study. Such manual efforts are expensive to be extended to summarize
more compatibility issues.

RQ1 Findings

In our analysis, no state-of-the-art approaches are capable of detecting all five types of compatibility issues that
have been identified to date, and some of them require considerable manual effort.
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3 REPLICABILITY STUDY (RQ2)

The second research question aims at checking to what extent can we replicate the experimental results yielded by the
state-of-the-art tools targeting compatibility issues detection.

3.1 Tool Selection

Ideally, we would like to consider all the tools to perform the replicability study. Among the nine primary studies,
there are, in total, seven tools worth reproducing. ACRYL and FicFinder have respectively been first presented in a
conference paper and then extended to a journal paper. In these two cases, only the tool versions presented in the
latest paper are considered. Among the seven tools, we decide to exclude Pivot as it does not really involve the actual
detection of compatibility issues in Android apps, as highlighted in Table 3. For the remaining six detection tools, we
download all of these different tools from their published site and contact the authors of the tools to make sure if the
tools per se and the experimental datasets are the same as they were presented in the original papers. The developers
confirm that IctApiFinder [32] has been updated due to the evolution of dependencies. We then try to execute them
one-by-one in our local environment to make sure they can be successfully reproduced. Unfortunately, we have to
further exclude ACID and ACRYL from consideration as these two tools cannot be successfully executed. We have
contacted their authors for clarification, but until now, we still cannot properly execute them. Therefore, we conduct
the reproducibility study based on the remaining four tools, which are detailed as follows.

CiD [45] first models the lifecycle of publicly available Android APIs by extracting Android APIs from Android
framework source code and then analyses Android Apps including both the primary app code and extra code. However,
it is uncertain whether the Android app has accessed a problematic Android API or not just by checking if the app
contains an invocation of the problematic Android API as the problematic Android API can also be protected by SDK
version checkers. Therefore, the authors proposed a path-sensitive inter-procedural backward data-flow analysis to
verify if the problematic Android APIs are protected with API-level related conditions. A compatibility issue is identified
once the API is not protected by version condition checks and the API is not supported in the range designated in
AndroidManifest.xml.

IctApiFinder [32] first conducts an extensive empirical study over 11 consecutive Android versions and approxi-
mately 5,000 Android Apps. The authors find that many different APIs are released between two consecutive Android
API releases and thus App developers or third-party library developers provide additional code to guarantee the same
behaviours on different OS versions. More importantly, the additional supporting code shares the same pattern that
is SDK version check. With the provided SDK version check, different Android APIs are invoked to run smoothly on
different OS versions. Based on these findings, they propose the tool by first building the interprocedural control flow
graph (ICFG) by Soot for Android Apps and then extracting Android APIs (including the publicly available Android
APIs and the restricted APIs with the access modifier protected) from SDK (android.jar) file as the authors believe that
it is not accurate to extract from the SDK document api-version.xml. With the ICFG, it transfers the dataflow analysis
problem into a reachability problem. For each Android API in the ICFG, the tool detects if it is supported in the defined
API levels interval in AndroidManifest.xml as there are different SDK version constraints (conditional SDK version
check to access the Android APIs) in different program points. If the designated API levels are not supported at a certain
point, an issue is detected.

CIDER [34] focuses on compatibility issues caused by callback APIs as the evolution of Android frameworks. With
the help of an empirical study, they find that two common types of callback API evolutions: API reachability change
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and API behavior modification can change app control flows and induce compatibility issues. Thus, they leverage the
concept of Callback Control Flow Graph (CCFG) [77] and propose a graph-based model, Callback Invocation Protocol
Inconsistency Graph (PI-Graph), to capture the structural invocation protocol inconsistencies to detect callback-induced
compatibility issues (inconsistent app control flows) when apps running on different API levels. The authors first encode
seven different PI-Graphs related to 24 key Android APIs from their empirical dataset and then implement the detection
tool based on Soot [67].

FicFinder [73] is actually the first seminal work to better understand fragmentation-induced compatibility issues and
detect these issues via the proposed approach. By conducting empirical study and investigating real-world compatibility
issues, the authors found that the majority of the issues are induced by the improper use of Android APIs in a problematic
running environment, which is called issue-triggering context and the context can be expressed in context-free grammar.
Therefore, the algorithm identifies the issue-inducing Android APIs as well as their dependencies, analyses the calling
context, and then compares it with the modeled issue-triggering context. To analyze the dependencies issue-inducing
API related, the algorithm carries out an inter-procedural backward slicing on the call site to acquire the slices of
statements on the basis of program dependence graph [29]. If the triggering context is not considered before invoking
the API, a new issue is reported. To implement this artifact, the well-known static analysis framework, Soot [67], is
utilized.

Each of the selected tools requires a specific configuration. As the detection result relies on these basic configuration
parameters, we investigated the tool document and configuration setup process and tried to align the configurations
between these selected tools to make sure they do have a similar configuration.

3.2 Datasets

Recall that, with RQ2, we are interested in evaluating the replicability of the selected tools. We aim to achieve this
by running the tools against their original datasets. We, therefore, request the tools’ authors to share their datasets,
including mainly the ones with results manually confirmed by the authors5 and have been explicitly discussed in their
manuscripts (hence can be compared). To this end, we have eventually selected 65 apps, which are made up of (1)
twenty Android apps for CIDER, seven apps for CiD, eight apps for IctApiFinder, and thirty for FicFinder.6It is worth
reminding the readers that we have to exclude some of the shared apps because they are no longer available on the web
and hence the apps cannot be downloaded based on the information shared by the authors, or the shared source code
snippets cannot be compiled to Android apps. Nevertheless, this exclusion of a small number of apps including 12 from
IctAPIFinder and 23 from FicFinder (12 + 23 = 35) should not impact the results of the replicability study.

3.3 Results

When carried out our replication, CIDER and CiD were found to have exactly the same outputs on the original Android
Apps. In contrast, FicFinder and IctApiFinder have some different outputs with regard to their original experimental
Apps. We now detail their differences respectively.

IctApiFinder. The artifact was developed along with the paper in 2018 and was not open-sourced till 2021. With
the acquired eight exact Android Apps, we can successfully run the tool on all of them. However, 6 of them do have
a different number of issues reported compared with the original paper. Among the six different apps, the paper in

5We decide to not request the full dataset leveraged by the authors because it may involve a very large number of apps that are not convenient to share.
6The FicFinder authors have actually considered 53 Android projects but only thirty of them can be compiled into Android APKs. Although FicFinder can
take either Android APKs or disassembled class files as input, we will only replicate the capability of analyzing Android APKs, which are also the input of
the other considered tools.
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total reported 49 issues regardless of TP (True Positive) and FP (False Positive), while our experiment reveals 108
compatibility issues. As we cannot obtain the original results rather than the reported number of issues, we cannot
know which issues are different compared with the original results. One reason explaining the differences could be that,
as also confirmed by the authors, the tool has not been maintained during the last three years. Therefore, there are
some dependencies that are not available anymore, and also, there are some APIs not supported in the newer updated
dependencies. To release the project, the authors replaced it with newer versions of dependencies and commented out
some non-supported APIs in the project. The authors further noted that they could not make sure if such updates have
bad or good effects on the final detection results.

FicFinder. The artifact was first published in 2016 and then extended in 2018. We can successfully execute the
artifact on all of the Android projects. The paper describes the detected results in two different categories. One is
compatibility issues in TP and FP, and the other is Good Practice (GP) meaning already fixed issues. After we reproduce
the artifact with the original experimental Android app dataset in our local environment, seven of them have different
outputs compared with the original ones presented in the original published paper. Among the seven apps, we find
that 2 of them have the same total number of detected results but have a different number of compatibility issues and
good practices, such as GadgeBridge [10] was reported one detected issue (regardless of TP and FP) and one GP but
we reproduced with 2 issues detected, AnkiDroid [9] was reported 4 GP detected but we reproduced with 4 issues.
The remaining five apps further have a different total number of detected results, such as LibreTorrent [11] revealed
6 GP but we detected only 3 GP, MozStambler [13] contained 1 issue and one GP but we only detected 1 issue. The
possible reason behind this is that they did some regular updates on the artifact as the authors still utilize this one in
their research, such as the case study in their newer work Pivot.

To summarize, as revealed by our study, most of the experimental results yielded by the selected four tools could be
reproduced. The small number of cases that cannot be reproduced are mainly due to tools’ updates, either because
of lacking maintenance so that we have to arbitrarily update some dependencies to make it runnable in practice or
intentional evolutions to keep improving its capabilities. Such updates, either intended or not, have indeed caused
difficulties in reproducing the exact original results. Therefore, we argue that there is a need to always record the
artifacts, along with the experimental datasets such as Android apps including both source code and bytecode APK files
if possible, in permanent sites (e.g., Zenodo or Figshare). The artifacts should also be well-configured in docker-alike
containers that can support direct execution of the tools and hence mitigate unnecessary dependency errors that may
hinder the tools’ replicability.

RQ2 Findings

Most of the experimental results yielded by the four selected state-of-the-art tools can indeed be reproduced. There
are, however, a small number of non-replicated cases that are mainly caused by slight updates of the tools or the
evaluated apps.

4 COMPARISON STUDY FOR ISSUE DETECTION (RQ3)

This research question aims to empirically compare the state-of-the-art tools targeting the detection of compatibility
issues in Android apps. We rely on the validity provided by the artifacts themselves. We answer this research question
by first presenting the experimental setup (including tool selection and datasets) in Subsections 4.1 and 4.2 and then the
experimental results in Subsection 4.3.
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4.1 Tools Selection

Recall that there are only four tools that we can replicate to scan compatibility issues (as discussed in the previous
section). Therefore, we select the same four tools to achieve this objective in this work, i.e., comparing these four tools
w.r.t. their compatibility issues detection capabilities.

4.2 Datasets

In this work, we use the following two datasets to support our comparison study in compatibility issues detection.

• Dataset1: The same 65 apps used for the replicability study as discussed in Section 3.
• Dataset2: 645 Android apps selected from the total 1,375 open-source apps of AndroidCompass dataset [56].

AndroidCompass contains a dataset of git commits related to Android compatibility checks (including evolution-
induced, device-specific, and override/callback-related ones), which are originally harvested from 1,375 open-
source Android projects on Github. Some git commits contain compatibility issue fixes (e.g., adding compatibility
checks for APIs that are not protected initially), while others do not (e.g., adding new Java files that include
compatibility checks). In this work, we are only interested in the former ones as based on which we could locate
problematic app versions containing actual compatibility issues. This study will leverage this information as
partial ground truth to support the comparison study. We collect Android projects with git commits containing
API version guard checks (i.e., checking the Android versions just before the API invocations). Going one step
further, we reset the commit of the selected projects just before the fix commit (i.e., adding Android version
checks) and compiled them into installable APKs. Unfortunately, several app projects are no longer available on
Github, while some others cannot be easily compiled into APKs (e.g., due to outdated dependencies), so we
have to exclude them. Eventually, we were able to collect 645 apps (at least one compatibility issue in each of
them) to build this dataset.

4.3 Results

Results on Dataset1. We first apply the selected tools to analyze the apps in Dataset1. Unfortunately, 37 apps cannot
be handled successfully by both IctApiFinder and CiD (i.e., 24 and 15 failures, respectively). The corresponding error
messages, such as worker thread execution failed 7, Dex version is not supported 8, and IllegalArugmentException 9,
etc., indicate that the failures are mainly raised by Soot, the underlying static analysis framework leveraged by these
two tools. This problem has been discussed by the authors in their article as a potential threat to validity. It is also a
well-known problem when performing static analysis on top of Soot.

For the remaining 28 successfully analyzed apps, Table 5 presents the detection results. CIDER, different from the
other three detection tools, was developed for callback-induced compatibility issues. Among the 28 apps, only 8 apps
are reported to include callback-induced issues. The reason behind this small number could be explained by the fact that
the tool only leverages seven manually summarized rules to detect such issues. Such a manual process may not be able
to include all the different situations and hence may lead to incomplete results. Similarly, FicFinder, which leverages
20 manually summarized incompatible APIs, reports only 82 compatibility issues, which are also significantly fewer
results compared with the remaining two tools that have leveraged systematic approaches to harvest incompatible APIs
(as indicated in Table 3). The typical working process for these selected issue detection tools as shown in Figure 3 in the
7https://github.com/soot-oss/soot/issues/1279
8https://stackoverflow.com/questions/49606951/dexexception-not-support-version
9https://github.com/soot-oss/soot/issues/331
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Table 5. Experimental results obtained based on the 65 apps located in Dataset1.

App Name Callback-induced Evolution-Induced
CIDER FicFinder IctApiFinder CiD

Tinfoil-Facebook 0 1 1 2
kolabnotes 1 4 5 6
SteamGifts-chocolate-debug 0 6 20 23
OsmAnd 1 3 7 44
iFixitAndroid 0 7 58 218
Simple-Solitaire 1 0 1 10
Anki-Android 0 6 150 86
login-sample-debug 4 0 2 3
ooniprobe-android-1.3.1-debug 1 0 4 38
APICompatibility_Inheritance 0 0 2 3
APICompatibility_Varargs 0 0 2 2
SurvivalManual-4.1-debug 0 2 1 15
Calendula 0 15 29 63
libretorrent 3 1 13 59
APICompatibility_Protection2 0 1 1 0
StreetComplete 0 2 7 5
red-moon 0 0 13 21
padland 1 0 13 4
duckduckgo-0.6.0-release 1 0 1 2
transdroid 0 1 214 37
materialistic-hacker-news 0 1 32 36
materialfbook 0 1 15 38
ownCloud 0 2 66 181
AndStatus 0 2 43 27
RedReader 0 1 30 7
opentasks-1.1.8.2 0 24 14 51
APICompatibility_Basic 0 0 1 1
Gadgetbridge 0 2 21 35
Total 13 82 766 1,017

paper includes two steps. The first one is incompatible APIs gathering and the second step is issue detection via program
analysis by incorporating the incompatible APIs harvested in the first step. The number of collected incompatible
APIs is strongly correlated with the final detected number of compatibility issues. The number of incompatible APIs
leveraged by CiD and IctAPIFinder is much more than others. The more incompatible APIs imply more potential
incompatibility issues. This experimental result further confirms that it is essential to invent systematic approaches to
harvest incompatible APIs so as to support automated compatibility issues detection in Android apps.

Both IctApiFinder and CiD yield significantly more results than FicFinder (revealed by the total number of detected
issues in Table 5 classified into two types, including callback-induced and evolution-induced, according to the targets of
the selected detection tools) since they do take systematic approaches to collect much more incompatible APIs compared
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with the limited manually harvested ones in FicFinder, which demonstrates the importance of the incompatible APIs
gathering for the issue detection. However, the detection results of IctApiFinder and CiD are quite different. Among
the 28 apps successfully analyzed by both of these two tools, IctApiFinder and CiD respectively yield a total of 766
and 1,017 issues, for which only 52 were reported by both of them. This experimental result is quite surprising as we
would have expected that IctApiFinder and CiD would have much more overlap in terms of their detected compatibility
issues. We, therefore, go one step deeper to investigate why these two tools yield quite different results, i.e., being
able to locate a quite number of compatibility issues while also missing many of them reported by the other tool. We
look at the number of distinct incompatible APIs detected by these two tools. Our analysis shows that the total 766
and 1,017 compatibility issues reported by IctApiFinder and CiD are essentially caused by 147 and 551 incompatible
APIs, respectively. As highlighted in Figure 5, the intersection between these two incompatible APIs sets is quite small
(i.e., only 63 out of 551 incompatible APIs considered by CiD are also taken into account by IctApiFinder). One reason
causing this difference is that different framework versions are considered (e.g., the incompatible APIs collected by
IctApiFinder are from 4 to 27, while CiD is from API 1 to 25). Subsequently, the common compatibility issues reported
by both of these two tools will be small as well. We could not configure the same incompatible APIs from the same
range of API levels as different detection tools require different inputs. For example, FicFinder requires JSON-like
configuration of incompatible APIs as input and IctApiFinder takes additional third-party tools, such as Heros [23],
Doop [64], LogicBlock [20, 31], etc., to extract incompatible APIs. Even though a fair comparison is not possible, we
could still have such a comparison to have a basic understanding of the ability of issue detection among the collected
detection tools. As is known to us, the attribute minSDKVersion indicating the minimum API level on which the apps
could be run is always greater than API level 4 among nowadays available apps. Among the dataset of a total of 710
(65 + 645) Android apps in our experiments, only 4 of them set the minSDKVersion to 4, only accounting for 0.56%
(4/710). The lower API level of the API range does have little impact on the issue detection results.

48884 63

IctApiFinder CiD

Fig. 5. Venn diagram of incompatible APIs utilized in Ic-
tApiFinder and CiD.
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Fig. 6. Compatibility issues detected by different detection
tools against Dataset2.

Results on Dataset2.
We then apply the selected tools on Dataset2, which contains a large number of real-world Android apps selected

from the AndroidCompass compatibility checks dataset. Unfortunately, over half the apps are excluded from the dataset
as they cannot be successfully analyzed by all the selected tools. Among the 277 remaining apps, CIDER, FicFinder,
IctApiFinder, and CID have reported 12, 277, 5,009, and 27,874 compatibility issues, respectively. Figure 6 further
illustrates the distribution of detected compatibility issues in real-world Android Apps. Clearly, CiD yields more issues
Manuscript submitted to ACM
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than the other tools, followed by IctApiFinder and then FicFinder. CIDER reports the least number of compatibility
issues. These differences are also significant as confirmed by a Mann-Whitney-Wilcoxon (MWW) test at a significant
level10 at 0.001.

We note that this experiment, although with a large number of apps, supports the same findings discussed previously.
First, there is a strong need to invent systematic approaches to harvest compatibility issues detection rules (i.e.,
identifying incompatible APIs). As shown in Figure 6, the number of issues reported by CIDER and FicFinder (with
manually summarized rules) is significantly less than that achieved by IctApiFinder and CiD (with systematically
harvested rules). Furthermore, the fact that the intersection between the results yielded by the selected tools is quite
small suggests that existing tools could be leveraged to complement each other. This result further shows that there is
still a gap in the community to implement promising approaches to flag compatibility issues in Android apps, i.e., the
capability of detecting compatibility issues has not been mature. Last but not the least, we believe that it is not exactly
fair to directly compare existing tools targeting compatibility issues detection in Android apps as the evolution of the
Android ecosystem is very fast. Tools developed at different times will likely collect a different set of incompatible
APIs (e.g., the incompatible APIs collected by IctApiFinder are from 4 to 27, while CiD is from API 1 to 25), which
subsequently will lead to a different set of compatibility issues. Therefore, we argue that, when comparing compatibility
issues detection tools, there is a strong need to make sure that the underlying set of incompatible APIs is kept the same,
which is however non-trivial to achieve as existing tools may not always be made open-source.

RQ3 Findings

CiD is able to yield more compatibility issues than the other tools. However, their results do not overlap much,
suggesting that existing tools are complementary to each other and yet still have limitations to achieve comprehensive
compatibility issues detection. Furthermore, the fact that CiD and IctApiFinder can yield significantly more results
than FicFinder and CIDER suggests that it is essential to leverage systematic approaches to mine incompatible APIs
so as to support the comprehensive detection of compatibility issues.

5 ANDROMEVOL AND ITS EFFECTIVENESS EVALUATION

API/Field
Extraction

Compatibility
Analysis

Android
Framework

Samsung
Galaxy S21

… …

Xiaomi
Mi 11

Incompatible
API/Field List

Fig. 7. The working process of AndroMevol.

5.1 Approach

The working process is illustrated in Figure 7. AndroMevol is responsible for experimentally pinpointing incompatible
APIs, which could be accessed by Android apps that subsequently will suffer from compatibility issues. While existing
approaches are either labor intensive or only the evolution of the official Android releases is considered, AndroMevol not
10Given a significance level 𝛼 = 0.001, if p-value < 𝛼 , there is one chance in a thousand that the difference between the datasets is due to a coincidence.
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only takes the evolution of official Android releases but also the evolution of third-party Android customizations into
consideration. It takes as input a set of Android frameworks extracted from various sources (i.e., the official Android
open-source code and customized ROMs released by different manufacturers) and outputs a list of incompatible Android
APIs through occurrence detection. It achieves this through two key steps, (1) API Extraction and (2) Compatibility
Analysis. We now detail these two steps, respectively.

5.1.1 Step 1 – API Extraction. We want to systematically identify all the incompatible Android APIs, including both
device-specific APIs and evolution-induced ones. Concerning APIs, we extract methods and fields modified by the access
modifier public or protected both from java classes and interfaces. Additionally, the examined APIs not only include
the publicly provided ones [14] but also those restricted APIs (i.e., non-SDK APIs) [42, 76]. It is worth mentioning
that we do not take the implementation of the collected APIs into account as we cannot extract the implementation
of the APIs easily and we either cannot determine if the implementation update of the APIs would eventually induce
compatibility issues. We will discuss the effects of such extraction on threats to validity. To this end, we need to consider
as many versions of Android frameworks as possible, including the official ones mainly maintained by Google and the
customized ones provided by different Android manufacturers such as Samsung and Xiaomi (i.e., hereinafter referred to
as brands). For each brand, we need to consider one framework at each Android API level.

In practice, this is non-trivial to achieve. First, it is expensive to purchase a complete set of physical devices covering
all the brands. Yet, some brands (or specific versions of those brands) are no longer available on the market and hence
cannot be purchased. Therefore, for simplicity, we will only consider the major brands and resort to their publicly
released ROMs (instead of the physical phones) to locate the bytecode of Android frameworks. To determine the
Android version of the released ROMs, we extract the ROMs and check the attribute of ro.build.version.release
in the file build.prop. Second, during the evolution of the Android system, the framework code has been relocated to
different locations or even changed into other formats that are hard to interpret.

To overcome this, we propose a best-effort approach to disclose incompatible Android APIs. The more frameworks
provided, the more complete results the approach will yield. For the official Android frameworks, to ensure full coverage
(one framework per API level), we resort to the official Android Open Source Project (instead of the released ROMs) to
locate Android APIs. To support the analysis of both Android framework source codebase and bytecode versions (often
named as framework.jar), we implement in this module two parsers.

Source Code Parser. This parser directly parses all the Java files located in the Android framework codebase
project.11 For each Java file, it records all its publicly defined methods and fields. Inspired by the approach proposed by
Li et al. [46], we further refine the previous results by taking into account the following features:

Inheritance: A sub-class will implicitly extend all of its super classes’ public or protected methods even if it does not
explicitly redefine them. Similarly, when a given redefined method is dropped out in the sub-class, there is still a need
to keep track of it as it could still be available (e.g., implicitly inheriting from its superclass, for which it has not yet
been dropped out). These situations need to be carefully taken into account in order to achieve accurate results.

Generic type: Generic type is a Java feature that parameterizes types for convenience. An example of generic type
could be the second parameter (i.e., 𝐸) defined in method <LinkedList: E set(int, E)>. This parameter (or generic type)
will make it complicated to syntactically match its usages in practice, e.g., its usages could be both set(int, String) and
set(int, Float). This feature needs also to be resolved.

11https://github.com/aosp-mirror/platform_frameworks_base
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Varargs: Varargs is a Java feature that challenges the syntactic detection of API usage in Android apps. Varargs
(defined as TYPE...) allows methods to receive an arbitrary number of parameters, which traditionally can be done
through an array. For example, the MessageFormat.format method is declared as format(String, Object...). The three dots
after the final parameter’s type indicate that the method can receive two or more parameters in practice, e.g., the actual
usage of this method could be format(String, Object) or format(String, Object, Object), etc.

Bytecode Parser. The implementation of this parser is more straightforward. Similar to the source code parser, it
leverages Soot to go through all the Java classes in the jar file and record all the publicly defined methods and fields. It
then goes one step deeper to take class inheritance into consideration to refine the results. The generic type and varargs

features are ignored in this parser as they are expressed in different formats compared with the expressions in source
code (i.e., the expressions such as <LinkedList: E set(int, E)> and format(String, Object...) do not exist in the decompiled
Java files).

During our analysis, we noticed that the APIs extracted from the source code repository and the framework.jar
bytecode have some differences, i.e., some methods in the source code repository are not included in the framework.jar,
and vice versa. By comparing the source code repository with its corresponding official framework.jar (at the same
API level), we realize that some packages exist only in the source code but are not packaged into the framework.jar.
Similarly, many APIs extracted from the bytecode do not exist in the source code. That’s because the same source
code files in different releases or different customizations are packed into different package files. This difference will
unavoidably impact the subsequent compatibility analysis. To mitigate such an impact, we resort to a filter to exclude
packages that only exist in source code or bytecode. The filter eventually contains 3,148 package names, which have
been subsequently applied to all the API extractions, no matter which parser is used.

Android
Framework

Huawei

Samsung

Xiaomi

…

…

…

API Level 19 API Level 21 API Level 22 API Level 30

…

…

…

… … ……

Evolution Induced Incompatible APIs

Device Specific Incom
patible APIs

…

Fig. 8. Incompatible APIs identification in Compatibility Analysis.

5.1.2 Step 2 – Compatibility Analysis. The second module of AndroMevol takes the extracted Android APIs as input
and pinpoints potential incompatible methods and fields that could cause runtime crashes or unexpected behaviors
if accessed by Android apps without appropriate guard checks. It aims at generating a complete list of incompatible
APIs that could be leveraged to support existing or emerging app analysis approaches to soundly pinpoint practical
compatibility issues in Android apps.

The approach we take to identify incompatible APIs is represented in Figure 8. Given a method or field in a framework
(either official or customized), we consider it as an incompatible API introducing compatibility issues if (1) within the
same brand, it exists in some versions but not in others (the evolution induced incompatible APIs as is shown in every
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1 public <U> void method1(U t1) {
2 ...

4 public <E extends java.lang.String> void
method2(E t2) {

5 ...

7 public void method3(java.lang.String... t3) {
8 ...

(a) Java source code with generic types and varargs

1 public void method1(java.lang.Object) {
2 ...

4 public void method2(java.lang.String) {
5 ...

7 public transient void method3(java.lang.
String[]) {

8 ...

(b) Jimple code generated with Soot

Fig. 9. Code example for generic types and varargs.

single row in Figure 8) or (2) at the same API level, it exists in the frameworks of some brands but not in others (the
device-specific incompatible APIs as is shown in every column in Figure 8). Following this rule, this module visits
every method and field in each framework to locate potential incompatible APIs, which are then put into a single
configuration file for easing external usage.

Because generic type and varargs features are not involved in the bytecode parser, the results yielded by the bytecode
parser will be slightly inconsistent with the ones yielded by the source code parser as we collect APIs both from source
code and the file framework.jar in released ROMs. To mitigate this issue, we put additional effort into this module to
unify the results before conducting the actual compatibility analysis. Figure 9 shows an example of how these features
are represented in intermediate representation for compiled Java programs. Figure 9a represents the declaration of
methods with generic types and varargs as parameters while Figure 9b displays the corresponding Jimple format, which
is the principle Intermediate Representation and basic analysis unit in Soot [17]. Finally, the unification is done by
applying the following rules to the results yielded by the source code parser.

method(T) −→ method(java.lang.Object)

method(T extends java.lang.Util) −→ method(java.lang.Util)

method(java.lang.String...) −→ method(java.lang.String[])

The rules are built based on our observations on how generic type and varargs features are handled by the Java
compiler and Soot. After applying these rules, the generic type and varargs no longer persist in the extracted Android
APIs, resulting in unified results that also simplify their potential usages (i.e., no need to consider generic type and
varargs features anymore).

5.2 Effectiveness of AndroMevol (RQ4)

This research question concerns the effectiveness of our AndroMevol prototype itself in incompatible API gathering. We
set out to evaluate if it is capable of automatically generating a list of incompatible Android APIs (i.e., methods and
fields) for helping the community spot potential compatibility issues in Android apps.
5.2.1 Datasets.

For the sake of simplicity, in addition to the official Android system, we select five additional platform vendors for this
experiment. The five selected vendors are Samsung, Xiaomi, Huawei, OPPO, and Oneplus. We chose these because they
Manuscript submitted to ACM
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Table 6. Distribution of exclusive/absent methods and fields in different API levels at different vendors. Recall that for the official
platform, we have recorded the evolution-specific results for all the available Android API levels. This table only presents the results
from version 19 to 30 for comparison purposes.

API level API Official Huawei Xiaomi Oneplus OPPO Samsung Total (Distinct)
Exclusive Absent Exclusive Absent Exclusive Absent Exclusive Absent Exclusive Absent Exclusive Absent (Methods/Fields)

19 Methods 765 21,498 1,428 16,148 324 20,478 42 17,105 1,831 15,844 12,606 5,206 22,938
Fields 88 28,533 4,864 20,245 211 26,538 40 24,671 6,665 18,503 12,540 12,524 28,670

21 Methods 579 24,347 3,531 18,916 4,472 17,561 769 21,294 33 21,938 12,434 9,915 24,955
Fields 25 28,140 5,758 19,560 5,569 19,280 650 24,235 18 24,815 12,693 12,372 28,165

22 Methods 585 36,669 4,010 30,604 9,071 25,083 704 33,369 5,922 28,801 13,491 21,051 37,290
Fields 25 45,240 6,542 35,677 8,418 33,122 1,812 39,946 10,434 31,530 13,947 27,985 45,281

23 Methods 580 32,134 2,139 27,976 8,424 21,299 532 29,185 3,356 26,351 14,544 15,344 32,723
Fields 25 39,386 3,723 32,458 6,279 29,195 2,804 32,660 6,540 28,891 15,929 19,914 39,413

24 Methods 1,518 31,851 2,777 27,478 7,949 22,100 - 233 30,074 17,445 12,957 33,371
Fields 408 36,930 5,175 27,941 7,486 25,260 1,021 32,766 18,565 14,609 37,340

25 Methods 1,534 34,705 - 7,852 24,916 585 32,245 4,700 28,371 18,037 15,251 36,246
Fields 415 40,324 7,538 28,399 809 35,172 8,135 27,961 18,944 17,538 40,741

26 Methods 1,155 49,485 3,978 33,442 8,343 28,835 687 36,702 4,755 48,514 18,056 19,730 55,464
Fields 372 53,367 9,420 32,956 6,898 35,040 1,085 40,958 4,852 49,152 19,064 23,501 56,769

27 Methods 1,064 41,635 3,405 35,633 8,709 30,212 115 39,055 5,910 32,970 19,462 19,821 42,706
Fields 347 74,642 31,195 37,716 6,594 61,938 72 68,952 9,869 58,603 20,194 48,874 74,989

28 Methods 700 61,900 4,993 52,667 15 57,390 19,471 35,732 7,343 49,928 19,843 37,828 63,629
Fields 61 63,080 12,073 41,844 23 53,302 7,589 47,565 12,533 40,581 19,148 34,732 63,634

29 Methods 392 70,555 6,905 50,192 11,621 45,191 1,743 54,899 9,048 47,627 26,812 30,334 70,962
Fields 36 66,569 12,052 46,243 8,556 49,232 2,051 55,630 13,965 43,715 20,934 37,321 66,605

30 Methods 443 79,750 - 13,455 43,557 2,526 54,401 11,989 57,321 28,494 28,899 111,064
Fields 110 70,590 9,240 47,223 9,072 47,370 15,332 48,205 22,605 34,405 72,040

Total (Distinct, Device-specific) 3,473 346,673 59,805 214,247 32,548 273,885 42,456 260,937 52,939 300,003 108,082 196,486 397,678Total (Distinct, Evolution-induced) Exclusive: 7,374 Absent: 23,126
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Fig. 10. UpSet plots of the intersections of methods (left) and fields (right) offered by different vendors at API level 29. An UpSet
plot is made up of three parts: (1) The left barplot presents the total size of each set, (2) The bottom plot presents all the possible
intersections, and (3) The top barplot presents the occurrence of each intersection marked in the bottom plot.

are among the most popular Android brands in the market. For the official Android system, we consider all its platform
versions as they are all recorded in the open-source repository. For the remaining five vendors, we consider one platform
version at each API level, ranging from 19 (i.e., the minimal version that still holds over one percent of distribution) to
30 (i.e., the latest version at the time when we conducted this study). Ideally, we should additionally consider 55 (5
platform vendors * 11 platform versions) different Android platform versions. Unfortunately, it is non-trivial to collect
those frameworks related to specific vendors. Indeed, the vendors have neither maintained a complete release document
nor recorded the AOSP version in their released ROMs. As a result, we have to download ROMs from different sites
(notable ones include [15, 18, 19] etc.) to locate the correct ones aligned with certain AOSP versions. This step has cost
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the authors more than a month to complete, and in total, we have downloaded and explored over one thousand ROMs.
Still, we cannot successfully extract the platform frameworks for Huawei at API levels 25 and 30 and OnePlus at API
level 24. To this end, we have to ignore those versions when applying AndroMevol to generate the list of incompatible
Android APIs. Nevertheless, ignoring the three versions should not impact the reliability of the generated incompatible
API list. That’s because we do not take them into consideration when we determine if APIs are incompatible or not.
Moreover, these missing ROMs hardly exist as we cannot find them in the wild (even if we have spent more than one
month searching). Take Huawei as an example, its latest Android OS has been replaced by its HarmanyOS. The ROM
with API level 30 customized from the official Android was not even published to the public.
5.2.2 Results.

Table 6 summarizes our experimental results. In total, AndroMevol identifies 397,678 incompatible APIs with
both evolution-induced and device-specific APIs considered that do not exist in all the considered platform
versions. This list contains 388,819 device-specific ones that only exist in some vendors’ platforms but not in others
and 30,500 evolution-induced ones (i.e., summarized in the last row) that only exist in some framework versions but
not in others even within the same vendor. It is worth noting that the same incompatible API could not only reside in
device-specific APIs but also in evolution-induced ones. In total, 21,641 incompatible APIs both belong to device-specific
and evolution-induced APIs and 23,459 distinct incompatible APIs were harvested. For example, an API is added in
a newer official release. Some customized OSs merge such APIs but others may not, which would introduce both
device-specific and evolution-induced APIs. Every platform contains APIs that are (1) exclusive to the platform version
itself and (2) absent from the other platform versions at the same API level. This experimental result suggests that both
the evolution of the Android framework and the customization of the official framework introduced by different Android
vendors have introduced divergences among the different platform versions. Since a given Android app is expected to
be installed and executed on all those platforms, such divergences may cause inconsistencies in offered Android APIs
and, subsequently, cause app crashes on some platforms while being successful on others (i.e., compatibility issues).
Additionally, it is worth noting that the number of incompatible APIs is increasing as the evolution of Android releases
including both the official and customized ones, which would induce more compatibility issues if the developers do not
handle such incompatible APIs properly during their development. To avoid such potential issues in released apps,
developers should pay more special attention to their development while invoking such APIs. Moreover, OS maintainers
could proactively reduce the number of incompatible APIs in their releases.

To evaluate the correctness of the harvested incompatible APIs, we resort to human efforts to check a set of sampled
results manually. We first randomly selected 378 incompatible APIs from the selected detection tools, CiD, FicFinder,
CIDER, and IctApiFinder as well as the incompatible API harvesting tool, Pivot 12, and then manually checked their
incompatibility to set them as ground truth. With the validated ground truth, AndroMevol achieved a high precision of
82.24% and recall of 96.17% in identifying incompatible APIs. What’s more, the incompatible APIs missed by AndroMevol

are almost harvested from other packages, such as the external Unicode support 13, which is out of consideration
of AndroMevol and we will try to resolve in future.

Figure 10 further illustrates with an example the incompatible methods/fields differences (via respectively two UpSet
plots) between different platforms at API level 29. The left barplot in the UpSet plot represents the total number of
elements from different sets. For example, the left UpSet plot in Figure 10 shows that Samsung provides the highest

12In total, we have 23,459 distinct incompatible APIs harvested and resort to the famous Sample Size Calculator [16] with a confidence level of 95% and a
margin of error of 5%. It gave out a sample size of 378 based on the total sample size of 23,459. We, therefore, selected 378 incompatible APIs.
13https://developer.android.com/guide/topics/resources/internationalization
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number of methods for developers while official gives out the lowest number of methods, which are represented in the
left barplot with the number of methods over 80,000 and 60,000, respectively. The top barplot shows the detailed number
of elements common or unique among different sets, such as the first bar with the number 55,440, which corresponds to
the direct bottom dotted line and represents that the total number of 55,440 methods are common among all the six sets,
and the last bar with number 631 representing that the official framework provides 631 unique methods comparing with
other five vendors since there exists only one dot in the bottom plot. Clearly, and as expected, the majority of methods
and fields are kept for all the considered platforms, while each of them has some exclusive ones. The fact that different
combinations of intersections (for both methods and fields) exist shows that there are indeed divergences among
the selected platforms, which can lead to potential compatibility issues. We observe that, perhaps surprisingly,
there are a significant number of methods and fields that are not available in the official framework but
are available on all the other platforms. Our in-depth investigation reveals that this phenomenon is caused by
the fact that some APIs have been removed by the official framework during its evolution but are kept by customized
frameworks. This suggests that the customized framework developers do not always keep up with the updates
of the official framework. This confirms our previous finding [49] that there are divergences between the official
Android framework and the selected customized frameworks.

RQ4 Finding

AndroMevol is effective in harvesting incompatible APIs. Among the official Android framework and its five branches,
it has identified a total of 397,678 incompatible APIs, giving an accuracy of 98%.

5.3 Comparison with state-of-the-art tools in incompatible API gathering (RQ5)

The compatibility issue detection tools we selected for our replicability study all have their approach to harvesting
incompatible APIs. It should be noted that these detection tools were developed first to gather incompatible APIs and
then to feed such APIs to their analysis implementation to pinpoint compatibility issues. In addition, the identified
compatibility issues are only induced by a subset of the collected incompatible APIs as we cannot enumerate all of these
incompatible APIs in our collected finite app dataset. In contrast, our tool AndroMevol was designed to systematically
identify incompatible APIs with both evolution-induced and device-specific ones considered. In our last research question
to evaluate the performance of our approach, we propose to further compare the ability to identify incompatible APIs
between our tool and the state-of-the-art detection tools – FicFinder, CIDER, CiD, and IctApiFinder. Our comparison
study aims to address the following concerns: How many incompatible APIs are identified by these detection tools?
Could the APIs pinpointed by our tool cover the incompatible APIs identified by other detection tools? If not, what is
the reason for the differences in identifying the incompatible APIs?

Besides the detection tools we discussed in the previous comparative study, we re-involved the excluded API
gathering-oriented tool, Pivot [72]. Pivot, different from the previous detection tools aiming to detect compatibility
issues in apps with different approaches, is proposed to automatically learn Fragmentation-Induced API-correlations
from released Android Apps. The tool first builds inter-procedural control flow graphs by associating the app’s call
graph and every method’s control flow graph and then traverses the whole graph to identify device-checking statements
and evaluates the conditions on each branch. With the identified device-checking statements and the constraints on
each branch, all reachable APIs with the device constraints are constructed as API-device correlations. At last, the
paper resorts to two metrics: in-app confidence and occurrence diversity, to filter out invalid API-device correlations.
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The API-correlation is a tuple comprising of an API invocation and the guarded device-checking conditions, such as
<android.hardware.Camera$Parameters: void setRecordingHint(boolean)>, “Nexus 4”>.
5.3.1 Datasets.

We extracted the incompatible APIs used in the selected four different detection tools, including CiD, IctApiFinder,
CIDER, and FicFinder, and downloaded the incompatible APIs generated by the API harvesting tool Pivot. We involve
the tool, Pivot, back because it was developed for incompatible APIs gathering from the published Android apps rather
than issue detection, which we discussed in RQ3 and excluded it. We now detail the differences between the selected
issue detection tools including CiD, IctApiFinder, CIDER, and FicFinder as well as Pivot and AndroMevol with regard to
the ability in collecting incompatible APIs.
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Fig. 11. UpSet plot of incompatibility APIs among different detection tools. An UpSet plot is made up of three parts: (1) The left
barplot presents the total size of each set, (2) The bottom plot presents all the possible intersections, and (3) The top barplot presents
the occurrence of each intersection marked in the bottom plot.

5.3.2 Results.

Figure 11 represents the differences between the selected detection tools, including the newly considered API harvesting
tool Pivot, and our proposed tool AndroMevol. In the UpSet plot, the left bar chart shows how many incompatible APIs
were pinpointed by the detection tools. This bar chart clearly shows that our tool AndroMevol (with reporting 236,099
incompatible APIs) outperforms the other detection tools by pinpointing many more incompatible APIs.
Manuscript submitted to ACM
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The possible intersections represented in the top and bottom plots further reveal that most of the incompatible APIs
identified by AndroMevol were actually missed by the other selected state-of-the-art detection tools. As illustrated in the
first column of the vertical bar chart, 195,883 incompatible APIs are exclusively harvested by AndroMevol, accounting for
82.97% of the total number of harvested incompatible APIs. This result is expected as AndroMevol not only systematically
records the historical changes of the official Android framework but also takes into account the various customizations
done by five smartphone manufacturers. It is still worth mentioning that even though the majority of the collected
incompatible APIs are unique to AndroMevol, AndroMevol still could cover a considerable number of incompatible APIs
reported by our selected tools. For example, the number of incompatible APIs in the intersection among AndroMevol
and CiD accounts for 82.70% (13,938/16,694) with regard to the incompatible APIs given by CiD.

Interestingly, even though AndroMevol significantly outperforms the other tools by harvesting much more incompati-
ble APIs, it does miss some incompatible APIs within all sorts of types that are identified by the selected state-of-the-art
tools. We, therefore, go one step further to manually check those incompatible APIs harvested and utilized in the
published tools and investigate why they cannot be identified by our tool AndroMevol. Our analysis shows the main
reason is that the different approaches do have different Android eco-system coverage. AndroMevol mainly focuses on
incompatible APIs with different signatures from the Android framework, but other tools except FicFinder take different
Android packages and method semantics into consideration. We now discuss the identified differences in detail.

• FicFinder was the earliest detection tool to identify compatibility issues. It harvested incompatible APIs manually
and contains only 20 incompatible APIs. The bottom plot also reveals that our tool AndroMevol could also cover
most of the manually collected APIs but not all of them. To identify incompatible APIs, AndroMevol extracts
incompatible APIs from framework.jar provided in Android ROMs, which mostly contains package of Android
framework but not others. Since we do not have a consistent correspondence between Jar files in Android
ROMs and their source code, it is non-trivial to extract APIs for other packages from other Jar files in Android
ROMs. Therefore, we only took framework into consideration when we developed AndroMevol, which might
miss some incompatible APIs provided in other Jar files.

• Pivot [72] was proposed to collect the API correlations by learning from real published Android apps to empower
their compatibility issue detection tool (i.e., FicFinder [71]). Our in-depth analysis reveals that Pivot considers
more than 1,000 different device-checking conditions, such as Vivo, Lenovo, Meizu, and HTC-related device
checks, etc., which were not taken into account in our experiments (i.e., we only considered five brands at the
moment). This result sheds light on our future work to consider more popular Android devices for harvesting
an even more comprehensive set of incompatible APIs.

• CIDER focuses on compatibility issues triggered by invoking callback APIs. Some of the callback APIs are added
during the evolution of Android, which can also be identified by AndroMevol. Some other incompatible APIs
were detected because they have involved semantic changes (the signature has not been altered), which, by far,
have been overlooked by our tool AndroMevol (cf., 6.2.1).

• CiD, the state-of-the-art compatibility issue detection tool, extracted incompatible APIs from the provided
API summary in the AOSP source set. The summary contains APIs from not only the Android framework but
also other packages. Unfortunately, the API summary is no longer provided for the newer Android releases.
We, therefore, harvested incompatible APIs from the Android framework only (extracting APIs both from the
source code of Android framework and framework.jar provided in Android ROMs) in our approach, resulting
in some incompatible APIs missed by AndroMevol (i.e., only being reported by CiD). For example, APIs from
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class android.net.wifi.p2p.WifiP2pDevice are provided in the summaries but we cannot extract them from
the source code of the Android framework. That’s because the java file locates under the source set packages 14

rather framework. We focus on the Android framework only as it provides the basic services that Android
apps directly and heavily rely on [22, 28, 41, 46, 48, 54, 75]. We do not extend the API levels support of CiD
here because we focus on the comparison of incompatible APIs gathering between the collected tools and our
proposed artifact. In addition, we also adopt the same approach focusing on the Android framework to harvest
incompatible APIs (as CiD𝑛 in Section 6.1) since the API summary is no longer provided in the AOSP source set.

• IctApiFinder, even though the module of compatibility issue detection has been updated, the module of incom-
patible API extraction is still the same as the one published in the corresponding paper. To retrieve incompatible
APIs, the developers extracted APIs from released SDKs API level 4 to API level 27. The SDK contains all of the
APIs necessary for App development provided by Google. Our tool extracts only from the Android framework.
Thus, the APIs not in the framework are missed by AndroMevol (cf., 6.2.1).

RQ5 Findings

Compared with the state-of-the-art detection tools in collecting incompatible APIs, AndroMevol outperforms all of
them by harvesting at least eight times more incompatible APIs, including both device-specific and evolution-induced
ones and 195,883 previously unreported ones.

6 DISCUSSION

We now discuss the key implications of this research, including prioritized research directions that should be conducted
for mitigating the fragmentation impact on the Android community. Our literature review and experimental findings
raise a number of issues and opportunities for research and practice communities.

6.1 Implication

Comprehensive Compatibility Issues Detection: Our systematic literature review revealed that app compatibility
issues are induced by five types of incompatible APIs. Existing detection approaches all focus on compatibility issues
induced by some specific types of incompatible APIs. To pinpoint issues induced by all types of incompatible APIs,
customers need to resort to different detection tools, which makes the detection laborious and arduous. Therefore, we
argue for a comprehensive issue detection approach, which could detect issues induced by all types of incompatible
APIs.

Continuous Improvement to Adapt to the Fast Evolution of the Mobile Ecosystem. With the rapid evolution
of the open-source Android Operating System, detection tool maintainers need to take new system releases into account.
Many device vendors release lots of different models as their own publishing step. To detect the newly introduced
compatibility issues, these tools need to be refined once a new system version is released and a new device induced.
However, these tools are not self-adaptive. They all need to be carefully adjusted.

As an example towards demonstrating the necessity to continuously update the tools to adapt to the fast evolution
of the mobile ecosystem, we spend additional efforts to update the open-source CiD project by extending its supported
API ranges from 1-25 to 1-31 (Android12 with API level 31 is the latest Android release). The updated version is referred
to as CiD𝑛 . We then apply CiD𝑛 to analyze the apps in Dataset2. Figure 12 summarizes the experimental results, along

14https://cs.android.com/android/platform/superproject/+/master:packages/modules/Wifi/framework/java/android/net/wifi/p2p/WifiP2pDevice.java
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with that achieved by the original CiD. Clearly, CiD’s performance has indeed been improved after adapting to the latest
release of Android frameworks. This evidence strongly suggests the necessity to keep adapting compatibility issues
detection tools to support the latest changes of the mobile ecosystem. We therefore argue that different automation
approaches are needed to facilitate the extraction of Android APIs in order to automate issue detection when new
Android versions and devices are released.

C
iD

C
iD

n

0 50 100 150
#. detected issues

Fig. 12. Comparison between original CiD and API life-cycle extended CiD.

Integrating Dynamic Testing to Verify Compatibility Issues: Currently, most research approaches proposed to
tackle compatibility issues in Android apps rely on static analysis. However, efficient, static analysis is also known to
yield many false-positive results. We argue that dynamic testing approaches should also be included to supplement the
analysis of static analysis approaches (e.g., to practically verify the results yielded by static analysis approaches). It is
nevertheless non-trivial to build a comprehensive dynamic testing environment for checking compatibility issues, as it
needs to include all publicly available Android devices, for which the number is also continuously changing. To cope
with this, we argue that crowdsourced mobile app testing could be leveraged, especially in lightweight mode directly
supported by the Android system, to pinpoint and subsequently mitigate compatibility issues.

Characterizing Semantics-changing Incompatible APIs: In addition to the five types of incompatible APIs
discussed in this work, which are all related to the existence of the APIs, there is another type of API-induced
compatibility issue that goes beyond APIs’ existence to concern their semantic changes. Given an API with semantic
changes, even if its signature persisted in the framework, the client apps accessed into it could also be impacted. Such
semantics changes will be propagated to the client app, which may not have yet adapted to such changes. As recently
revealed by Liu et al. [50], there are indeed a number of Android APIs involving semantic changes during the evolution
of the framework. However, such semantic changes are hard to be automatically identified, so as to the corresponding
compatibility issues. Therefore, we argue that our community should also pay special attention to semantics-changed
incompatible APIs and invent advanced approaches to mitigate them, either by carefully (1) documenting them if it is
unavoidable to change the semantics of existing APIs or (2) testing the client apps to identify and fix such issues before
publishing the apps to end-users.

Supporting Automated Compatibility Issue Repair: Finally, after API compatibility issues are identified, we
argue that automated approaches are also needed to help developers fix them [79]. This is especially true for such apps
that have already been released to the public, as users may not even be able to install the apps or face runtime crashes
even if the apps can be successfully installed. Automated repairing approaches could keep users from encountering
such unfavorable situations, meanwhile helping app developers fix the issues for better future releases.

Supporting Issue Detection Besides Android Ecosystem: Compatibility issues exist in all sorts of different
systems besides Android, such as the highly evolved Linux and their third-party customizations as well as the web
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browser systems. Different APIs are provided along with their system release. To enhance the robustness of such
systems, developers should detect such issues as much as possible before their system’s release. Our proposed approach
could be extended to gather incompatible APIs, including the evolution-induced APIs and device-specific ones in
order to do issue detection as the general issue detection approach always starts with incompatible APIs harvest. Our
approach could facilitate researchers to focus on detailed algorithms to detect compatibility issues with the help of the
collected incompatible APIs.

6.2 Threats to Validity

6.2.1 External Validity. There are several threats to validity associated with the results we presented in our replication
study. One threat is the configuration of all our selected detection tools. All selected tools are implemented on top of
the Soot static analysis framework, which also requires Android frameworks as input parameters. However, the version
of the Soot and Android frameworks accessed in the selected artifacts may be still different because we cannot know
the exact versions leveraged in every detection tool. Different Soot versions were released with different bug fixes and
enhancement modules merged. They could have different performances and give different analysis results, breaking
the analysis validity. To mitigate this threat, we meticulously align the configurations among them as much as we can
to provide approximately the same environment. Another threat depends on the approach to harvest incompatible
APIs, especially between IctApiFinder and CiD. IctApiFinder extracts APIs from Android framework API levels 4 to
27 based on published artifacts, while CiD acquires from the source code of Android framework API levels 1 to 25 on
their approach. Different ranges of API levels and the trade-offs made while pinpointing incompatible APIs would
unavoidably bring in discrepancies, which may result in different performances even on the same dataset. In addition,
our approach focuses on the signature of the APIs while CIDER could identify APIs with semantic changes, which are
missed by AndroMevol.

The major threat to the validity of the work to extract a complete set of incompatible APIs is related to the selection
of vendors with customized Android frameworks, which may not be representative of the whole ecosystem as there are
many more vendors available in the ecosystem. Nevertheless, we have attempted to mitigate this impact by focusing
on the most popular Android brands. Furthermore, because of various challenges put on by both Android and the
customized vendors, we cannot locate the correct ROMs on the internet, although we have spent a significant amount
of time doing that. Even for identified ROMs, we may not be able to extract the framework code for some vendors’
framework platform versions, making the results incomplete. The corresponding results do not reflect the whole set of
incompatible APIs in the wild. In addition, we focus the API extraction on the package framework.jar, which does not
contain all the available APIs (such as some incompatible ones only identified by CIDER, IctApiFinder, and CiD, etc.).
That’s because we cannot locate the other package names and locations providing other APIs among different vendor
OS releases. However, we have made extra manual efforts to ensure that the results that can be computed are indeed
correct.

6.2.2 Internal Validity. Since we want to include a complete evolutionary history of the official Android framework,
which is essential to observe evolution-induced incompatible APIs, we resort to two different approaches to extract
APIs (e.g., source code parsing and direct bytecode extraction). These two approaches may introduce inconsistencies
as (1) we cannot locate the exact framework version (at the source code level) that is customized by the third-party
vendors, and (2) not all the source code files (e.g., systemui-related code is not included in the framework bytecode but
compiled into an independent APK) are packaged to the final framework version embedded in real devices. To mitigate
Manuscript submitted to ACM
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the potential impact, we collect APIs from the source code of the official Android releases and harvest APIs from the
same API level decompiled framework.jar extracted from the official Android virtual machines provided in Android
Studio. We collect the package names that exist in both source code and framework.jar and set the list of package names
as an API filter (cf., 5.1.1). With the API filter, we exclude APIs that do not reside in our collected packages (i.e., the
package names of the APIs do not exist in our collected package names). This process, unfortunately, could also exclude
actual incompatible APIs. However, the number of excluded APIs is generally small, making this impact neglectable.

We only take the API signature (the method signature refers to the combinations of the method return type, the
method name, and the method parameters type list, thus method’s checked exceptions are ignored.) into consideration
when we determine incompatible APIs (cf., 5.1) in our proposed AndroMevol, which would induce false negatives.
Besides, the updates of the class hierarchy including member methods and fields movement among parent and child
classes are also ignored in our implementation. However, the movements of the APIs (methods/fields) among parents
and their child classes can be and should be handled by the detection tools, such as the implementation of the detection
tool, CiD, so as to avoid an explosion of the number of incompatible APIs. If we add all APIs belonging to parents’ class
to children’s class, the number of incompatible APIs would increase sharply. To have a fair number of incompatible
APIs and take full advantage of detection tools, we hand over the capability to manage class hierarchy to detection
tools. In the future, we would enhance or develop our artifacts to consider these limitations to systematically detect as
many types of compatibility issues as possible.

7 RELATEDWORK

In recent years, compatibility issues have been a hot topic in the Android community [35, 39, 59, 61, 68, 79]. Since the
apps are inseparable from the official Android APIs, it is essential to probe compatibility issues caused by the evolution
of the Android operating systems.

Besides the tools we investigated in the paper, there are many other works handling various API issues. For example,
Li et al. [46, 47] build a prototype tool, CDA, to characterize deprecated Android APIs by mining the evolution of
the Android framework. Similar method has also been applied to characterize inaccessible APIs [42] and inconsistent
release time of Android apps [41]. Scalabrino et al. [61] introduce ACRYL, learning from the change histories of other
apps in response to API evolution. It can identify compatibility issues, yet in addition suggest repairs. The authors
empirically compare ACRYL and CiD and track down no obvious winner, but the results indicate the possibility of
combining the two methods in the future. Later on, they extend their work [62] by enlarging the datasets and adding
some interviews and details, but there is no obvious improvement in terms of the detection approach. Xia et al. [74]
conduct a large-scale study on the practice of handling OS-induced API compatibility issues and their solutions, and
they propose a tool named RAPID to ascertain whether a compatibility issue has been resolved. Mobilio et al. [55]
acquaint a tool named FILO which can assist Android designers in tackling backward compatibility issues caused by
API upgrades. FILO is designed to recognize app methods that need to be altered to adapt to the API changes and report
symptoms observed in failed executions to facilitate repair. Mahmud et al. [53] propose ACID, an approach to detecting
compatibility issues caused by API evolution. Experimental results demonstrate that ACID is more accurate and faster in
detecting compatibility issues than previous techniques. The fly in the ointment is that ACID only considers the changes
in Android method invocations and callbacks brought about by evolution rather than considering device-specific
compatibility issues.

To detect such compatibility issues, different information flows are needed to identify by constructing inter- and
intra-procedural control flow graph [44]. Qiu et al. [57] did an extensive comparison among three most prominent
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static analysis tools including FlowDroid [21] combined with IccTA [40], DroidRA [43, 66], AmanDroid [69, 70], and
DroidSafe [30]. They spotted out the advantages and shortcomings of each tools and revealed that it is important to
provide detailed configuration and setup environment specification to guarantee the replicability of experiments.

In non-Android communities, research on compatibility issues is also pervasive [25, 33, 58, 60, 80]. Sawant et al. [60]
analyze clients of popular third-party Java APIs and the JDK API and publicise a large dataset; also, they look into the
connection between the client’s response patterns and the deprecation policy the related API adopted. Chen et al. [27]
present an approach named DeBBI, which leverages the test suites of various client projects to detect library behavioral
backward incompatibilities.

To compare different tools developed for the same issue, Su et. al. [65] did an extensive comparison and proposed a
new benchmark called Themis facilitating our research community for automated GUI testing. They collected critical
bugs reported on Github with respect to their bug label revealing the severity and did experiments with five state-of-
the-art testing tools integrated with Monkey [12], and then gave out qualitative and quantitative analysis result. They
successfully identified 5 different challenges that these tools still face, such as the reachability of deep use scenarios, test
input generation etc., and shed lights on future research based on their systematic analysis results, such as integrating
heuristics to improve the capability to spot GUI bugs.

8 CONCLUSION

In this paper, we have conducted a literature review on research targeting Android app compatibility issues. Based
on this review, we are able to identify nine state-of-the-art works proposed to detect compatibility issues in Android
apps and among which we have summarized five types of incompatible issues reported by our fellow researchers. We
then confirm the reproducibility of the selected tools based on a replication study by running the tools against their
original datasets. We further go one step deeper to conduct an empirical comparison study among the selected tools.
Our findings indicate that compatibility issues detection is still at an early stage, which requires attention from the
community to keep improving so as to achieve sound compatibility issues detection. As categorised and reported by
other researchers, there are five types of incompatible APIs available in the mobile ecosystem but none of the existing
harvest approaches is capable of collecting all of them. To fill this gap, in this work, we propose to introduce to the
community a novel prototype called AndroMevol, which endeavors to construct a list including as many incompatible
APIs as possible. Experimental results demonstrate that AndroMevol is effective in achieving its purpose to generate a
list of incompatible APIs, which are useful for supporting the detection of compatibility issues in real-world Android
apps.
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