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Context: Event-driven programming plays a crucial role in implementing GUI-based software systems such as Android apps.
However, such event-driven code is inherently challenging to design and implement correctly. Despite a significant amount of
research to help developers efficiently implement such software, improved approaches are still needed to assist developers in better
handling events and associated callback methods.

Objectives: This work aims at inventing an intelligent recommendation system for helping app developers efficiently and
effectively implement Android GUI components.

Methods: To achieve the aforementioned objective, we introduce in this work a novel approach called Icon2Code. Given an
icon or UI widget provided by designers as input, Icon2Code first searches from a large-scale app database to locate similar icons
used in existing popular apps. It then learns from the implementation of these similar apps and leverages a collaborative filtering
model to select and recommend the most relevant APIs.

Results: Our approach can achieve 81% success rate when only five recommended APIs are considered, and a 94% success
rate if twenty results are considered, based on ten-fold cross-validation with a large-scale dataset containing over 45,000 icons and
their code implementations.

Conclusion: It is feasible to automatically recommend code implementations for Android GUI components and Icon2Code is
useful and effective in helping achieve such an objective.
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1. Introduction

With over 2.7 billion users worldwide using smartphones,
it is no surprise that the mobile app industry is thriving. It is
expected that mobile apps will generate $189 billion in revenue
by 2020, which is larger than the projected 2020 GDPs of many
developed countries, such as Canada and Australia. Android,
occupying over 80% of market shares, is undoubtedly the most
prominent mobile platform. Currently, around 2.8 million An-
droid apps are available on the official Google Play store for
users to download, and this number continually grows year-
over-year.

The huge number of available apps provides users with a
wide range of opportunities to choose apps to install. How-
ever, it also forces developers to develop and update their apps
in a timely manner as competition is some of the fiercest in
the world [1]. As a consequence, developers often adopt very
short release cycles to keep their apps competitive. This in-
cludes reasons such as to cope with new mobile devices or
OS versions, resolve negative user feedback, and rapidly intro-
duce new features. Nevertheless, it is non-trivial to keep releas-
ing apps in such short cycles, and developers are often under
high-pressure to fix vulnerabilities, bugs, and compatibility is-
sues [2, 3] and to cope with learning new development method-
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ologies, libraries, and state-of-the-art technologies. To assist
them the software engineering community has proposed vari-
ous approaches to ease developers’ work in keeping their apps
up-to-date [4, 5]. For example, automated API usage recom-
mendation approaches to strengthen the development of mobile
apps [6, 7], as well as other software systems [8, 9, 10]. These
approaches have been experimentally demonstrated to be useful
and effective in helping developers completing their implemen-
tation tasks.

Unfortunately, to the best of our knowledge, none of the
existing approaches have been proposed to support code imple-
mentation for Android apps’ GUI component event handlers.
GUI is a ubiquitous feature for all mobile apps, which are event-
centric programs driven by rich graphical user interface inter-
actions with users. One of the major complexities of imple-
menting mobile app GUIs is managing the complicated and
intertwined callback events from user interaction. This often
takes a major amount of coding and debugging efforts [11, 7].
Fortunately, functional APIs are capable of helping developers
implement the functionalities in callback methods. Indeed, as
empirically disclosed by Gao et al. [12], API recommendation
is useful for the development of Android app features, which
could be strongly bound to certain GUI icons (e.g., a camera
icon could indicate a feature of taking photos). Nevertheless, it
is still a time-consuming task to identify and correctly use the
appropriate functional APIs to fulfill the callback methods for
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implementing feature requirements [7, 13].
To help developers efficiently and effectively implement these

callback methods of GUI components, we propose a prototype
tool called Icon2Code to learn similar implementations from
existing Android apps. Icon2Code is based on the premise that
similar GUI components are often designed to have similar app
behaviors e.g., a heart icon for like, and this results in similar
code implementations. Icon2Code aims to capture such com-
mon implementations to assist app developers in implement-
ing interactions driven by GUI components. Icon2Code first
leverages a static analysis module to parse the code of exist-
ing apps and build mappings from GUI components to their
associated callback methods. Then for each callback method,
Icon2Code extracts its call graph and summarizes all of its ac-
cessed APIs, including those of third-party libraries. Finally
Icon2Code leverages a collaborative filtering algorithm to build
a recommendation system. This takes as input a GUI compo-
nent (i.e., an icon) and outputs a list of code implementation
bundles learned from such apps sharing similar GUI compo-
nents. The main contributions of this work include:

• Icon2Code, a prototype tool that takes as input an icon
or text describing its purpose and outputs a ranked list of
APIs recommended for implementing the icon-associated
callback method, or event handler;

• a large-scale training database containing mappings from
icons to their code implementations;

• ten-fold cross-validation reveals that our Icon2Code ap-
proach is useful and effective in recommending code im-
plementation for Android GUI components, achieving 81%
success rate when only the top five recommended APIs
are considered, and a 94% success rate if twenty results
are considered.

Section 2 presents a motivating example for the need for
Icon2Code. Section 3 presents the approach and key workings
of Icon2Code, and Section 4 describes its evaluation. We dis-
cuss the threats to validity and future work in Section 5. The
closely related works are detailed in Section 6, followed by the
summarization in Section 7.

2. Motivation

As argued by Chen et al. [14], developing the GUI of an app
involves two separate activities: (1) Design of the GUI and (2)
Implementation of the GUI. The former activity is often done
by professional designers as creating an intuitive and pleasant
user interface is crucial for an app’s success in the highly com-
petitive market. The latter usually involves the implementation
of the GUI interface itself e.g. GUI widgets details, layout, con-
straints, and handling of user interactions such as what happens
when a button is clicked. State-of-the-art approaches that have
attempted to generate GUI interfaces automatically [14] have
proposed a neural machine translator to translate GUI design
images to GUI skeletons. They have not attempted to help de-
velopers quickly implement user interactions code for the GUI
components in the user interfaces.

Listing 1: Examples of API usages in the method (Node 2 in Figure 1) reached
by the click event. It is worth mentioning that both Android APIs and third-
party library APIs are used in this method.

1 //Node 2
2 TelephonyManager telephonyManager = (

TelephonyManager) this.la.
getSystemService("phone");

3 String str = telephonyManager.
getNetworkCountryIso().toUpperCase()
;

4 JSONObject jSONObject = new JSONObject
();

5 jSONObject.put("isoccode", str);
6 new b(..., jSONObject.toString(), ...);

Consider Figure 1 as an example. This is a typical GUI
page extracted from an Android app com.himalayawellness.hi
malayakonnect. As highlighted, this GUI page contains various
GUI components referred to as icons through this paper. Each
of these icon GUI components must take user inputs, such as
a click or other interaction, and respond accordingly. For ex-
ample, when users click the Profile icon (top left), a new page
will be switched to. This should allow users to configure their
profile data for the app. Such behavior changes driven by user
inputs are usually done by so-called callback methods. Ide-
ally, each icon should be associated with at least one callback
method. The implementations of these callback methods are
often quite complicated, involving various method calls access-
ing multiple Android APIs and possibly third-party libraries.
As such an example, let us consider the simplified code snip-
pet, shown in Listing 1, extracted from one of the methods
(i.e., node 2) in the call chain triggered by the onClick callback
method (i.e., once the icon is clicked), this single method is in-
volved in at least three APIs including both Android and third-
party library APIs. A single callback can access many such
methods. Furthermore, a single GUI page can contain dozens
of icons, i.e., callback methods, making it even harder to cor-
rectly implement and debug. The event-driven nature of such
user interfaces is well known to be challenging to code [15, 16].
However, to the best of our knowledge, no existing approaches
help developers implement those complicated callback methods
associated with Android GUI icons.

3. Icon2Code

Figure 2 presents an overview of our Icon2Code prototype
tool. Its three key modules are (1) Database Construction Mod-
ule (DCM), (2) Similarity Calculation Module (SCM), and (3)
API Recommendation Module (ARM).

3.1. DCM: Database Construction Module

The key objective of this work is to recommend code imple-
mentations for GUI icons. We achieve this purpose by learning
from the code implementations of existing apps that have used
similar icons in their GUIs. To this end, the first module of
Icon2Code aims to pre-analyze a broad set of Android apps
to construct a database mapping icon to its code implementa-
tion, i.e. Android code, JDK, and Android APIs, as well as
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Event: 
Click
Handler: 
<com.himalayawellness.himalayakonnect.activities.
UserAppRoleChooserActivity: void onClick(...)>

Click event

2

1 3

API List 2

<android.content.Context:
getSystemService(...)>

<org.json.JSONObject:
put(...)>

<org.json.JSONObject:
toString()>

API List 3

<java.util.Calendar:
getInstance()>

<java.util.Calendar:
getTimeInMillis()>

...

API List 1

<android.content.Context:
getSystemService(...)>

<android.net.NetworkInfo:
isConnected()>
<android.net.ConnectivityManager:
getActiveNetworkInfo()>

Figure 1: Example of icon-bound GUI components and icon-associated event handler callback method. The callback method can access various methods and among
which each of them can further access different Android and third-party library APIs.

APKs

(2) SCM
Similarity Calculation

Module

Icon-->API
Mapping

(3) ARM
API Recommendation

Module
Icon

(1) DCM
Database Construction

Module

API
Candidates

Figure 2: The architecture of Icon2Code. Each icon involved in this work includes an icon image file and its description text given by app developers.

third-party library APIs (i.e., user-defined APIs or methods are
ignored). Figure 3 shows the working process of this module.

3.1.1. Preprocessing.
The first step preprocesses Android APKs to extract useful

information (such as the icons) to prepare for further analysis.
Android application package (APK) is the file format used to
distribute and install applications on Android. In APKs there
are two primary forms of icons: the vector icon defined by an
XML file, and the image icon provided as images files (such
as PNG files). Since the former does not directly come as im-
ages, we skip this form in this work and only consider the latter.
When disassembling Android APKs, we also parse the manifest
file to extract the targeted SDK versions, by extracting the val-
ues of minSdkVersion and targetSdkVersion). This information
will be used when recommending APIs for Android apps under
development, i.e., the recommended APIs should align with the
targeted SDK versions of the target app.

Listing 2: Examples of using XML attributes to bind icons with GUI compo-
nents.

1 //Example 1: ImageView, android:src
2 <ImageView android:src="@drawable/

next_btn"
3 android:id="@+id/nextBtn"
4 android:contentDescription="@string/

next_button_content_desc"
5 android:onClick="onClick"/>
6
7 //Example 2: Button, android:background
8 <Button android:background="@drawable/

button_cancel"
9 android:id="@+id/cancel_btn"

10 android:text="@string/cancel"/>

3.1.2. Code Analysis.
This step statically analyzes program code in Android APKs

to establish a mapping from icon-bound GUI components and
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(1) Preprocessing

Icon-to-APIs
Database

(4) Database
Construction

Icon-to-Callbacks

(2) Code 
Analysis

(3) Call Graph
Construction

Call GraphsCode  +  IconsAPK

Figure 3: The working process of the first module DCM. Each icon involved in this work includes an icon image file and its description text given by app developers.

their corresponding callback methods that respond to user events.
To achieve this, we analyse how icons are bound to GUI com-
ponents on an app UI page. We observe that icons are generally
bound through XML attributes in the apps’ layout configura-
tion files. For example, the source of an ImageView (i.e., an-
droid:src), the background image of a Button (i.e., android:back-
ground). Listing 2 shows two such examples on lines 2 and 8.
Table 1 summarizes the list of attributes we have considered
in this work, and this list has already been leveraged by other
Android analysis techniques [17].

Table 1: A set of attributes responsible for binding icons to GUI components.

Attribute Explanation
android:src Set a drawable as the content of the view

(e.g., ImageView).
android:background Set a drawable as the background of the

view.
android:drawableRight Set a drawable to the right of the text.

android:drawableTop Set a drawable on top of the text.
android:drawableLeft Set a drawable to the left of the text.

android:drawableBottom Set a drawable below the text.
android:drawableEnd Set a drawable at the end of the text.

android:drawableStart Set a drawable at the start of the text.

Listing 3: An example of dynamically defining an icon’s event handler (i.e.,
callback method) through program code.

1 public class MusicWallpaper extends
Activity implements View.
OnClickListener {

2 public void onCreate(Bundle bundle) {
3 setContentView(R.layout.layoutlagu);
4 ImageView v = (ImageView)

findViewById(R.id.nextBtn);
5 //Binding callback method to the icon
6 v.setOnClickListener(this);
7 }
8 @Override
9 public void onClick(View view) {

10 //This is the callback method
11 ...
12 }}

After locating GUI components, this step’s second task is
to infer their associated callback methods. As shown in List-
ing 3, it is non-trivial to achieve this, as callback methods can
be associated with GUI components in two different ways. Like
the bindings between GUI components and icon files, callback
methods can be specified through XML attributes. Listing 2
demonstrates such an example. The attribute android:onClick

(line 5) specifies the callback method (also here named as onClick)
that is triggered if the image view is clicked. This type of bind-
ing can be easily resolved by parsing the layout configuration
files. On the other hand, instead of statically defining the call-
back methods, Android app developers can make the binding
dynamically in program code. Using the same onClick callback
method, instead of using the XML attribute (line 5 in Listing 2),
developers can leverage code as shown in Listing 3 to achieve
the same purpose. This type of binding is much more challeng-
ing to identify. Fortunately in most cases the callback meth-
ods are added following the creation of a GUI component (e.g.,
findViewById() at line 4). By statically connecting those state-
ments, one can eventually make a mapping from icons to their
dynamically defined callback methods.

3.1.3. Call Graph Construction.
Based on the mapping from icons to callback methods, we

then harvest the set of APIs accessed by the aforementioned
callback methods and consequently build a mapping from icons
to their corresponding set of APIs, called when the icons receive
user inputs such as being clicked. Unfortunately, as shown by
our motivating example, it is not straightforward to achieve this.
A given callback method may access a set of other methods,
and each can invoke a set of APIs. We resort to static code
analysis to construct call graphs to ease the extraction of APIs.
For each callback method that we consider as an entry point, we
construct a call graph for it with nodes representing methods
and edges representing method invocations.

3.1.4. Database Construction.
For each icon identified previously, Icon2Code traverses its

call graph and extracts all Android and third-party APIs ac-
cessed by methods in the graph. It then puts this mapping of
icon to its associated APIs into a database. We consider this
to be the ground truth to support learning of API recommenda-
tions. Ideally, the more apps considered for training, the more
comprehensive the database will be, and subsequently, the more
reliable the API recommendation approach could be. Addition-
ally, Icon2Code further records completed API usage examples,
like the code snippet shown in Listing 1, into the database. This
allows Icon2Code to recommend further API usage examples.
We believe this will be useful and helpful for developers to mas-
ter the recommended APIs more quickly. As noted previously,
building event-driven interfaces is challenging and this helps
them to more easily reuse appropriate icon-related code, espe-
cially for complex screens.
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3.2. SCM: Similarity Calculation Module

Given an icon as input, SCM will locate similar icons from
the pre-built icon→ APIs database. Given an icon and a simi-
larity threshold, the pre-trained database may return thousands
of similar icons. We introduce a configurable parameter m to
control the number of most similar icons for analysis.

Since icons in Android apps can be associated with alterna-
tive text describing the icon’s purpose, such text is also lever-
aged to identify similar icons. We have identified three main
sources that provide alternative text to icon-bound GUI com-
ponents: (1) S1: The icon’s reference name (e.g., through an-
droid:src), which often describes the function of the icon; (2)
S2: The id name of the view (e.g., through android:id) where
the icon bound to, which often describes the function of the
view hosting the icon; and (3) S3: The alternative text defined
via android:contentDescription or android:text XML attributes,
designed to describe the function of the view. All three alterna-
tive texts are supposed to specify the purpose of the view and
should be similar to some extent. Take Listing 2 as an exam-
ple – alternative texts {S1, S2, S3} of the two examples are
{next_btn, nextBtn, next_button_content_desc}, {button_can-
cel, cancel_btn, cancel}. These are indeed similar to each other
in a set of alternative texts and align with the purpose of the
view and icon. In addition to a direct comparison between icon
images, we also use alternate text similarity to find the top-m
most similar icons.

Image Similarity Calculation. We rely on straightforward
approaches to measure the similarity of icons. Such approaches,
although easy to implement, may not be reliable in practice. We
introduce three algorithms to calculate similarities of images,
Oriented FAST and Rotated BRIEF (ORB) algorithm [18], Lo-
cality Sensitive Hashing (LSH) algorithm [19], and a traditional
Histogram algorithm [20]. Given two images p and q, their
similarity is calculated by Formula 1, where the fusion simi-
larity threshold is defined as 0.85. If the maximum value of
the similarity calculated by the three algorithms is greater than
or equal to 0.85, the maximum value will be taken as the fi-
nal similarity. Otherwise, the minimum value of the similarity
calculated by the three algorithms will be considered as the ul-
timate similarity of the fusion algorithm. Through this hybrid
image similarity calculation method, the random error caused
by a single method can be significantly reduced.

Let Maxs = max(ORB(p, q), LS H(p, q),Histogram(p, q)),
Let Mins = min(ORB(p, q), LS H(p, q),Histogram(p, q)),

S imimage(p, q) =

{
Maxs, Maxs ≥ 0.85
Mins, Maxs < 0.85

(1)
Text Similarity Calculation. To ascertain the similarity

of two text strings, edit distance is a widely-used method that
computes the minimum number of edit operations required to
transform one text into the other [21]. Levenshtein distance is
such a type of commonly used edit distance [22], upon which
the semantic similarity of two texts can be represented using the
Levenshtein ratio [23]. Given a and b as two texts, their Leven-
shtein ratio score can hence be calculated following Formula 2.

A perfect match will achieve a Levenshtein score of 1, while
an entirely dissimilar case will result in a score of 0. Given two
icons p and q, their alternate text similarity is calculated by For-
mula 3, where p′ and q′ are the alternative text of p and q, and
w1,w2,w3 are the weights of each type of alternative text, i.e.,
S 1, S 2, S 3, separately.

LevenshteinRatio(a, b) = 1 −
LevenshteinDistance(a, b)

|a| + |b|
(2)

S imtext(p′, q′) = w1 × LevenshteinRatioS 1(p′, q′) +

w2 × LevenshteinRatioS 2(p′, q′) +

w3 × LevenshteinRatioS 3(p′, q′)
(3)

We aggregate these two similarity calculation algorithms
to compute the overall similarity of two icons via Formula 4,
where α and β represent the weights of S imimage and S imtext,
respectively.

S im(p, q) = α × S imimage(p, q) + β × S imtext(p′, q′) (4)

3.3. ARM: API Recommendation Module
ARM learns from a set of code implementations to rec-

ommend APIs for the input icon that is under development,
i.e. developers want to implement its corresponding callback
method(s). Icon2Code leverages collaborative filtering to rec-
ommend API usages. Schafer et al. [24] present collabora-
tive filtering (CF) as a process of filtering or evaluating items
through the opinions of other people. The approach has often
been used to recommend items for users to purchase based on
past shopping records or the records of other users with similar
purchasing behaviors. In Icon2Code, an icon plays the role of
a user, while each API plays the role of an item. The goal of
ARM is hence to recommend users (icons) a list of items (APIs)
to purchase (to access).

Based on the m most similar icons returned by SCM mod-
ule, Icon2Code first determines the number of APIs (k) ac-
cessed by the associated callback methods of the selected icons
and models them into a (m + 1) ∗ k matrix. Table 2 illustrates
such an example. Icons – selected ones i1 → im plus the one un-
der development iedit – are represented as rows while APIs are
represented as columns. For the selected m icons, each of their
cells in the matrix is set to either true (1) or false (0), represent-
ing whether the icon-related callback methods have accessed
the corresponding API or not. For example, cell (i2, apik) is set
to be 1, indicating that callbacks of icon i2 has accessed apik.
For the icon under development (i.e., iedit in the last row), all of
its cells will be set to unknown (-1). The goal of this module
is hence switched to predict possible values for those unknown
cells. The cells received higher values – or the corresponding
APIs – will then be recommended for app developers to com-
plete the development of the icon-associated callback method.

The probability of recommending a given API api to iedit

can be calculated via Formula 5 [24], where neighbours(iedit)
is the set of the m most similar icons, sim(iedit, i) is defined by
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Table 2: An example of the encoding matrix.

api1 api2 ... apik
i1 1 0 1 0
i2 1 1 0 1
... 1 1 1 0
im 0 1 1 0

iedit -1 -1 -1 -1

Formula 4, and ¯riedit and r̄i are the mean ratings of iedit and i,
respectively. In our implementation, r̄i and ri,api are obtained
from the encoding matrix. For example, for the encoding ma-
trix shown in Table 2, we could calculate r̄i by measuring the
average rating of the cells in the row corresponding to i. For

¯riedit , we set its value to 0.8 following the general practice of the
state-of-the-art [25].

piedit ,api = ¯riedit +

∑
i∈neighbours(iedit)(ri,api − r̄i) · sim(iedit, i)∑

i∈neighbours(iedit) sim(iedit, i)
(5)

The output of Icon2Code will be a list of Android APIs that
are ranked based on the scores returned by Formula 5. For in-
stance, the API lists recommended for the examples given in
Listing 2 are displayed in Listing 4. Icon2Code will only return
top-N APIs, where N is another user-configurable parameter.
As well as the top-N APIs recommended for the active callback
method associated with an icon, Icon2Code will also provide
API usage samples that are gathered from the actual implemen-
tations of the selected similar icons.

Listing 4: The recommended API list for the examples given in Listing 2, where
N = 5.

// Example 1
<View: int getId()>
<MediaPlayer: boolean isPlaying()>
<MediaPlayer: void pause()>
<MediaPlayer: void setLooping(...)>
<MediaPlayer: void start()>

// Example 2
<Dialog: void <init>()>
<Dialog: void setCancelable(...)>
<Dialog: void setContentView(...)>
<Dialog: Window getWindow()>
<Window: boolean requestFeature(...)>

Implementation. Our prototype tool Icon2Code is imple-
mented in Java and on top of several well-known existing tools.
JADX1 is leveraged to disassemble Android APKs and convert
the APK bytecode into Java source code. Gator [26], specif-
ically its GUIHierarchyPrinterClient module, is used to infer
callback methods for pre-identified icon-bound GUI compo-
nents. Icon2Code leverages Soot [27] to construct call graphs
for all the event handler callback methods and extract APIs in-
voked by these callback methods, as well as code snippets to be
used as examples showing how APIs are accessed in practice.

1https://github.com/skylot/jadx

0 5 10 15 20 25 30

#.APIs

Figure 4: The distribution of the number of APIs accessed by icon-bound GUI
components.

4. Evaluation

We evaluate the effectiveness of Icon2Code by answering
the following three research questions:

• RQ1: How accurate is Icon2Code in recommending API
calling code for GUI components of Android apps under
development?

• RQ2: Do the number of the most similar icons and their
corresponding code implementations selected for learn-
ing impact Icon2Code’s performance?

• RQ3: To what extent do different weights of text/image
similarities impact the performance of Icon2Code?

• RQ4: Will the performance of Icon2Code be impacted
by the number of APIs accessed by icons selected for
training?

4.1. Dataset

We need a quality dataset containing icons mapped to a set
of APIs that are accessed after user interaction with the icons to
support our experiments. Unfortunately, no such dataset has yet
been released or made available and we had to build one from
scratch. We leveraged the first DCM module of Icon2Code and
applied it to a set of randomly selected Google Play apps, col-
lected from AndroZoo [28]. DCM scans a given Android app
to check if image files are provided. If so, it leverages code
analysis to construct mappings from icons to their associated
callback methods. If there are icon-callback pairs identified,
we extract APIs accessed by those callback methods and record
the results into the database if at least one API is collected.

We ran this process and built a benchmark database with
47,827 icons from approximately 5,000 apps. Each of the icons
in this database accesses at least one API. Figure 4 presents the
distribution of the number of API calls per icon. The median
and average numbers are 5 and 10.5, respectively. This suggests
that implementing each icon-related callback method is likely
to be complicated, involving more than five API calls in over
half of the cases. In an extreme case, the number of called APIs
is as high as 30.
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Figure 5: Experimental results of Icon2Code in recommending API usages to icon-bound GUI components.
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2.<com.prolificinteractive.materialcalendarview.MaterialCalendarView: void setSelectedDate(...)>

   ...
20.<org.json.JSONObject: toString()>

Figure 6: A concrete example of recommending APIs for a target icon extracted from app com.zjw.wearheart.

4.2. Evaluation Metrics

Given an icon or GUI component and its callback method
under development, the objective of Icon2Code is to recom-
mend a ranked list of APIs (e.g., N APIs) to help developers
complete the implementation of the callback function. To as-
sist in evaluating whether Icon2Code satisfies this purpose, we
leverage the commonly used success rate and hit rate metrics to
assess the usefulness and effectiveness of our approach. These
two metrics, either applied to evaluate result@1 or result@N,
have been recurrently leveraged by our fellow researchers to
assess other code recommendation approaches [25, 29].

The success rate metric has been frequently leveraged to
evaluate the effectiveness of similar recommendation systems.
For example, Nguyen et al. [25] leveraged it to evaluate per-
formance of their method-to-API usage recommendation sys-
tem. Given a set of icons ICON under testing, for the callback
functions under development of each icon icon, Icon2Code gen-
erates N recommended APIs, i.e., RN(icon), to fulfill them.
We consider that a recommendation is successful for icon icon
as long as at least one out of the N APIs are in the Ground-
Truth set GT (icon). The success rate for ICON can then be
calculated via Formula 6, where GT (icon) stands for the set
of APIs actually accessed by the callback functions of icon,
and matchN(icon) is defined as the intersection of the recom-
mended N APIs and GT (icon), i.e., matchN(icon) = RN(icon)∩
GT (icon).

success rate@N =
counticon∈ICON(|matchN(icon)| > 0)

|ICON|
×100%

(6)
The hit rate is another metric we leverage in this work to

supplement the success rate metric to describe the ratio of the
top N recommended APIs matching GT (icon):

hit rate@N =
|matchN(icon)|

N
× 100% (7)

4.3. RQ1: Performance of Icon2Code
We aim to validate the performance and effectiveness of

Icon2Code. Based on default parameters of Icon2Code, i.e.,
twenty neighbors (m = 20) and image only similarity calcula-
tion (α = 1, β = 0), we perform experiments with a standard
10-fold cross-validation procedure. We use the dataset based
on collected 47,827 icons and their corresponding set of APIs
accessed by associated callback methods. We randomly divide
our dataset into ten sets of 4,782 icons in each set. Nine sets
are used as training set and the remaining one for testing. This
process is then repeated ten times to confirm that each of the
ten sets has been treated as a test set once. We finally apply the
overall results of these ten validations to characterize the per-
formance of Icon2Code in each experimental setting. In order
to avoid the influence of icons from the same app on the ex-
perimental results, for all experiments in this work we narrow
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the selection range of neighbor candidates for each test icon to
those gathered from different apps.

Figure 5 shows our experimental results, including success
rate as well as hit rate, concerning a different number of rec-
ommended APIs (i.e., success rate@N and hit rate@N, where
N ∈ [1, 20]). Expectedly, the more number of APIs considered
for recommendation, the higher the success rate of Icon2Code
will be. When only one API is taken into account (i.e., success
rate@1), Icon2Code can already achieve over 50% of the suc-
cess rate. If we increase the number to 20, the success rate can
reach over 94%, showing high performance to be applicable in
practice.

Regarding the hit rate, as the number of considered APIs
increasing, it first slightly declines and then tends to become
stable. This suggests that (1) the top-recommended APIs have
a high possibility to be the ones needed by the developers, and
(2) more APIs will hit the ground truth if more APIs considered.
This experimental result shows that our approach is useful in
recommending APIs for assisting developers in implementing
the callbacks of icon-bound GUI components.

Case study. We provide a concrete case study to demon-
strate the effectiveness of Icon2Code. Figure 6 presents a typi-
cal case, where the icon under development is used to rewind to
the past during date selection in a calendar component. The top
left box shows the 20 neighbors (based on image similarity) re-
turned from the training database while the top right box shows
the 20 neighbors obtained through text similarity. Due to our
current simplistic implementation of image similarity calcula-
tion, not all neighbor icons are closely similar to the target icon.
Nevertheless, the top-ranked icons such as (1)(2)(3) are very
similar to the targeted one, and all of them are also relevant to
date manipulation. Subsequently, these similar icons will dom-
inate the selection process and allow Icon2Code to achieve a hit
rate at 95%, i.e., by learning from the implementations of these
20 neighbors, Icon2Code is able to recommend 19 (out of 20)
APIs that hit the ground truth list.

Notice that the un-hit API is related to the implementation
of media players. This API is recommended because several
icons in the neighbor list (i.e., (4)(10)(11)) are related to man-
aging the media player. This result indicates that the neighbor
list’s quality is essential to the effectiveness of Icon2Code in
recommending API usage code. This was a key motivation for
adding a text-similarity strategy into Icon2Code (as described
in Section 3.2. A better image similarity calculation strategy
could also improve the performance of Icon2Code.

4.4. RQ2: Impact of the selected number of similar icons

In our second research question, we explore the impact of
altering the number of similar icons (i.e., the parameter m) on
the performance of Icon2Code. To this end, we design multiple
sets of experiments considering different numbers of neighbors
and perform them with default settings for other parameters e.g.
when only image similarity is considered.

Figure 7 shows experimental results with respect to different
parameters, i.e., m ∈ {5, 10, 15, 20, 25, 30} (m = 5 means that
Icon2Code will only build the encoding matrix with 5 similar
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Figure 7: The success rates obtained by altering the number of similar methods
(i.e., parameter m).

icons). Similar to our previous finding, as the number of APIs
considered for recommendation N increases, no matter which
m is considered, the success rate also increases. By comparing
increasing trends, m = 5 achieves the worst performance, fol-
lowed by m = 10, which achieves slightly higher performance
but still clearly less than all the other settings. Interestingly,
when increasing the value of m to 15, the performance starts
to converge, i.e., the performance does not significantly change
any more while increasing the number of similar images m. The
hit rate follows a similar pattern, as shown in Figure 8. By in-
creasing the value of m, the hit rates slightly increase as well
and start to stabilize when m reaches 15 or 20.

These results show that the number of selected icons indeed
impacts the performance of Icon2Code when it is small. When
the number reaches a certain threshold, the impact tends to be
marginal. Furthermore, they also show that the default value (m
= 20) is a suitable number for Icon2Code to recommend API
usages for icon-bound GUI components.

4.5. RQ3: Impact of similarity calculation methods

We now explore the impact of the similarity calculation
methods on the performance of Icon2Code, i.e., the value of
α and β discussed in Section. 3.2. By default, the weights for
image similarity and text similarity (α, β) are set to be (1,0).This
means that only image files are required for the calculation of
similarity i.e., the text is optional. To evaluate the advantages of
including text similarities, we now compare this default setting
with another four settings formed by altering the weights, i.e.,
(0.8, 0.2), (0.5, 0.5), (0.2, 0.8), and (0, 1). Weights (0, 1) stand
for the cases where only text similarity is considered for locat-
ing similar icons in the training set. All the other parameters of
Icon2Code are kept the same to ensure a fair comparison.

Figure 10 illustrates these experimental results. Surpris-
ingly, the text-only setting achieves the best performance, and
yet all the alternative experimental settings (involving text sim-
ilarities) outperform (or achieve comparable results compared
to) the default setting when only image similarities are con-
sidered. Similarly, concerning the hit rate, as demonstrated in
Figure 9, experimental settings involving text similarities only
achieves a better hit rates than that of image similarities alone.
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Figure 8: The hit rates obtained by altering the number of similar methods.
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Figure 9: The hit rates obtained by adjusting the similarity calculation strategies.
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Figure 10: The success rates obtained by adjusting the similarity calculation
strategies (i.e., parameters α and β).

The performance differences, nonetheless, for both success rate
and hit rate are quite marginal.

This shows that developers can also resort to alternate text
to help find similar event handler callback methods. In the ab-
sence of icon images during design, developers could poten-
tially leverage our approach to select suitable icons. This result
suggests that the similarity calculation module is critical to the
success of Icon2Code. With a better image (icon) similarity
calculation method, Icon2Code could likely achieve better per-
formance. Since this is not our main contribution to this work,
we leave it for future work.

Case Study Revisited. We revisit the concrete example il-
lustrated in Figure 6. Interestingly, the 20 icon neighbors re-
turned by text similarity do share some common icons with that
obtained via image similarity. They also present several differ-
ences. The experiment results achieved via text similarity are
as good as, or even slightly better than, the results achieved via
image similarity. This shows that alternative text also provides
useful information to locate similar icons so as to learn event
handler code implementations for their associated GUI compo-
nents. Future work should focus not only on improving the im-
age similarity calculation methods but also on finding a smart
way to combine the capabilities brought by both image and text

similarities.

4.6. RQ4: Performance on different groups of training icons
Our last research question concerns the performance of the

Icon2Code tool over different groups of training icons. In this
work, we split the original training dataset into three groups:
(1) All the icons that have no more than five APIs accessed by
their associated callback methods, (2) All the icons that have
over five but no more than 10 APIs accessed by their associated
callback methods, and (3) All the icons that have over 10 APIs
accessed by their associated callback methods. Following the
same experimental setting, as discussed in Section 4.3, we re-
launch Icon2Code on the aforementioned three training groups,
respectively. Again, ten-fold cross-validation is leveraged in all
three experiments.

Figure 11 presents the experimental results. Interestingly,
when comparing the results across the three experiments, the
success rate increases from the first to the second groups and
from the second to the third groups. For example, the suc-
cess rate@5 of the three experiments are 74.56%, 81.6%, and
82.29%, respectively. This evidence suggests that increasing
the number of APIs accessed by icons selected for training could
improve the performance of Icon2Code. Furthermore, when
looking at each of the experiments alone, Icon2Code achieves
over 50% of success rate when only the first recommended item
is concerned for all the three experiments. When the number of
recommended APIs increases, the success rate also increases.
Considering the hit rate, as expected, regardless of the groups,
it will first slightly decrease when the number of API increases
and then stabilizes. These experimental results are all in line
with our previous experimental findings, confirming the effec-
tiveness of Icon2Code in recommending API implementations
for GUI components.

5. Discussion

We now perform sensitivity analysis for the threshold (i.e.,
0.85) set in image similarity and the three weights used in cal-
culating text similarities to examine if they are suitable for our
work.
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(c) Performance on samples with 11-20 ground-truth APIs

Figure 11: Experimental results of Icon2Code in recommending API usages to icon-bound GUI components with different numbers of accessed APIs.

Table 3: Experimental results obtained by varying the threshold in image simi-
larity.

Criteria 0.8 0.85 0.9 0.95
Top-1 60.46% 60.07% 60.15% 59.88%
Top-5 82.23% 81.21% 80.27% 80.56%

Top-10 89.57% 89.37% 89.57% 90.01%
Top-15 91.48% 92.14% 92.77% 92.8%
Top-20 93.58% 94.04% 94.46% 94.73%

Threshold in image similarity. In order to perform sensi-
tivity analysis on the threshold in image similarity calculation,
based on the parameters of twenty neighbors (m = 20) and im-
age only similarity calculation (α = 1, β = 0), we perform ex-
periments on the same dataset as Section 4, where standard 10-
fold cross-validation procedure is taken into account. We vary
the threshold from 0.85 to 0.95 with an interval at 0.05. Ta-
ble 3 summarizes the experimental results. It can be observed
from the results that increasing the similarity threshold may not
necessarily yield better results. Indeed, when threshold 0.85 is
considered, the performance at Top-1 and Top-5 is even slightly
lower than the results achieved by setting the threshold at 0.85.
Nevertheless, overall, the adjustments of the similarity thresh-
old have little impact on the experimental results. This evidence
indicates that our approach is not sensitive to the image simi-
larity threshold. We hypothesis that this insensitivity could be
related to the fact that we have only leveraged traditional image
similarity calculation algorithms, which may not be capable of
characterizing the images’ semantics. As for our future work
towards verifying this hypothesis, we will resort to deep learn-
ing models to measure images’ similarities.

Table 4: Experimental results obtained by varying the three weights in text
similarity.

Criteria (0.33,0.33,0.33) (1,0,0) (0,1,0) (0,0,1) (0.5,0.5,0) (0.5,0,0.5) (0,0.5,0.5)
Top-1 62.89% 61.49% 64.9% 58.59% 62.93% 61.55% 65.1%
Top-5 81.77% 79.88% 83.17% 75.05% 81.83% 79.82% 83.2%

Top-10 89.95% 88.45% 88.54% 88.9% 90% 88.23% 88.69%
Top-15 93.49% 93.24% 93.42% 93.93% 93.62% 93.19% 93.53%
Top-20 94.85% 95.24% 95.02% 96% 95.04% 95.14% 94.97%

The three weights in text similarity. Similar to the sensi-
tivity analysis for threshold in image similarity calculation, we
further conduct experiments to evaluate the sensitivities of the
weights set to calculate text similarities. In this setting, the pa-
rameters are adjusted to twenty neighbors (m = 20) and text
only similarity calculation (α = 0, β = 1). We perform 7 sets
of experiments, using different values of (w1,w2,w3) in Equa-
tion 3, and the results are shown in Table 4. The experimen-
tal results show that there is no clear winner among the three
alternative texts. Therefore, we set the three alternative texts
the same weight to make Icon2Code more versatile, aiming to
avoid the impact of corner cases such as one type of alternative
text in some apps not provided by app developers.

5.1. Threats to validity

Threats to Construct Validity. Icon2Code is implemented
based on several static analysis frameworks, including Soot [30]
and Gator [26, 31, 32]. Their reliability defects hence could
propagate to Icon2Code, thus introduce threats to the effec-
tiveness of our approach. Nonetheless, the above frameworks
have been demonstrated to be useful by various state-of-the-art
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works [33, 34, 35, 36] and hence the potential threats should be
limited.

Threats to Internal Validity. The main internal threat is
that we apply simulated experimental settings for evaluation
rather than studying real-world recommendation scenarios. Fol-
lowing the state-of-the-art [25], we mitigate this threat by form-
ing a large-scale dataset and employing 10-fold cross-validation
to reduce the impact of contingency. We used commonly agreed
heuristic evaluation metrics for our experiments with Icon2Code.
These may not indicate the actual performance of Icon2Code
in practice, and hence user studies are needed to evaluate its
effectiveness in real-world code recommendation. Icon2Code
cannot yet handle the situation where several icons share the
same callback methods. Furthermore, in some rare cases, the
harvested images do not represent the purpose of the GUI com-
ponents e.g., icons are provided as background. This may in-
troduce unrelated cases to our training database so as to impact
the final recommendation results. We plan to invent a means
to filter out such irrelevant icons and thereby to improve the
performance of our approach.

Threats to External Validity. A major external threat lies
in the random selection of mobile apps for establishing our
dataset. These may not generally represent all the available
apps in the Android ecosystem. We strived to mitigate this
threat by randomly selecting real-world apps released in the of-
ficial Google Play store, and conducting further analysis and
screening to retain those that meet our needs. Additionally, at
present, app obfuscation may be applied to some apps in our
dataset which may confuse icon to event handler code map-
pings. We did not consider it in this work. Nevertheless, as
we are primarily interested in learning API usage, which would
not be affected by simple obfuscation strategies such as method
renaming) [37].

5.2. Limitations and Future Work
It is known that recommendation systems often suffer from

the so-called cold start problem. This concerns the issue of
the system’s inability to draw any inferences for users or items
about which it has not yet collected sufficient information [38].
Potentially, our approach could also suffer from such a threat.
To better understand to what extent our approach is impacted
by the cold start problem, we conduct an empirical investiga-
tion by varying the number of icons our approach could learn
from the training dataset. We form our training set with the fol-
lowing number of available icons: {50, 100, 500, 1000, 1500}.
We then re-run the experiments discussed in Section 4.3 with all
the other parameters kept to their default values. Table 5 sum-
marizes our experimental results. As expected, the success rate
increases when enlarging the size of the training dataset. When
setting the number of icons included for training at 1,500, our
recommendation approach’s success rate can already exceed
80% at Top-5, 90% at Top-10, and even 95% if Top-20 is con-
sidered. This experimental result shows that the cold start prob-
lem indeed impacts the performance of our approach. However,
such an impact could be significantly mitigated if more training
apps are prepared. To the best of our knowledge, such a require-
ment is not difficult to achieve as it is relatively easy to collect

Table 5: Experimental results obtained by varying the size of the training
dataset.

Criteria 50 100 500 1000 1500
Top-1 64.44% 64.69% 66.91% 68.68% 69.5%
Top-5 83.02% 83.16% 83.19% 83.6% 83.62%

Top-10 90.41% 91.46% 91.52% 91.73% 92.81%
Top-15 94.75% 94.8% 95.48% 95.75% 96.06%
Top-20 95.24% 95.54% 95.23% 96.76% 96.9%

more Android apps. For example, the well-known AndroZoo
dataset [28] has collected over 10 million real-world Android
apps ready for adoption by our approach. In our future work,
we plan to enlarge our training set to provide more accurate API
recommendations for developers to implement the logic behind
each icon.

We have not distinguished between Android APIs and third-
party library APIs when recommending API usages for icon-
bound event handler callback methods. Our approach could be
leveraged to recommend third-party libraries for implementing
icons’ callback methods. Third-party library APIs may provide
enough information to infer the actual libraries, and even the
distinct versions of the libraries, to some extent. Library rec-
ommendation has been a hot topic in the software engineering
community [29]. For example, He et al. [39] have proposed
an approach to predict diversified third-party libraries for help-
ing developers implement mobile apps. This approach could
be leveraged to supplement ours so as to predict the right third-
party libraries and code snippets to use to help in implementing
mobile GUI components.

Apart from recommending API usage to icon-bound GUI
components, our approach could also be leveraged to recom-
mend icons to GUI designers. Given an alternative text describ-
ing the purpose of the icon (not yet designed), the returned icon
neighbors (samples) in the second module of Icon2Code could
be leveraged by designers to create suitable icons.

Furthermore, we plan to work on an improved similarity
calculation module for Icon2Code, aiming to invent more effec-
tive approaches to locate similar icons. At the moment, we have
leveraged Levenshtein distance to calculate the text-similarity
in this paper, which is a commonly-used string metric for mea-
suring the difference between two sequences. As for future
work, we consider introducing improved algorithms such as
deep learning networks to better calculate such similarities. Ad-
ditionally, for calculating the similarities of icon images, we
plan to also leverage state-of-the-art computer vision techniques
to better find the most suitable neighbors of the input icon so as
to achieve more relevant code implementation learning.

Some of the event handler callback methods, although rare,
could be bound to several GUI components. Developers often
use conditional judgments to define which specific code seg-
ments are related to which icon. At the moment, this type of
setting is agnostic by our approach and which could hence lead
to inaccurate results. It is also possible that the categorizes of
UI widgets may have some impacts on the performance of our
approach, e.g., our approach only works well on certain types
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of buttons, or image views, etc. As for our future work, we
plan to take these cases into consideration when improving our
approach.

We intend to integrate our prototype implementation as a
plugin into Android Studio, the default IDE recommended for
app developers. We then want to recommend icon event han-
dler API usage during the development phase of given Android
apps that require much coding work for icon-bound GUI com-
ponents. We want to carry out user studies of Icon2Code in
this context to determine if its event handler code recommen-
dations prove useful for large scale, complex Android develop-
ment projects.

Finally, to better evaluate the effectiveness of our approach,
we plan to conduct a large-scale user study involving carefully
designed tasks and representative user skills [25]. We also plan
to improve the usability of our approach to alleviate unneces-
sary noises introduced to the user study approach.

6. Related work

We summarize critical related work from three aspects, i.e.,
GUI component analysis of mobile apps, recommendations in
Android development, and collaborative filtering approaches
applied in software engineering.

6.1. GUI analysis in Android
To help developers better implement GUI components, sev-

eral tools have been developed [14, 40, 41] to assist the transi-
tion from UI design images to GUI implementations. For exam-
ple, Chen et al. [14] propose a deep learning-based technique
trained with the UI design and GUI implementation knowl-
edge learned from existing apps to convert UI requirements into
a hierarchy of GUI components. Unlike these works, which
focus on the code implementation of the UI design images,
Icon2Code aims to recommend API usages for Android GUI
components’ event handlers i.e., their associated callback meth-
ods.

Rountev et al. [26] target static object reference analysis to
model GUI-associated Android objects, their flow through the
application, and their interactions with each other via the ab-
stractions defined by the Android platform. In our work, we go
one step further to focus on the specific code implementation of
callbacks related to the GUI components. We also leverage tra-
ditional recommendation algorithm to provide developers with
references and suggestions to help them achieve rapid develop-
ment.

Xiao et al. [36] present a framework that leverages pro-
gram analysis techniques to associate icons and GUI widgets
and classifies the associated icons into eight sensitive categories
for Android apps. Xi et al. [42] propose DeepIntent, a frame-
work that associates the icons and contextual texts with GUI
widgets’ program behaviors. It infers the GUI widgets’ permis-
sion uses based on the program behaviors, synthetically con-
solidating program analysis, and deep learning techniques to
identify intention-behavior disparities. Although the above two
works are related to the analysis of GUI components and pro-
gram behaviors, our work is different. Their work represents the

program behaviors through the permissions used by the mobile
apps, while our work focuses more on code level API invoca-
tions called by the callbacks methods.

6.2. Recommendation in Android Development
Researchers have devoted much effort in facilitating An-

droid API recommendations to support mobile app develop-
ment. This is because Android apps development relies exten-
sively on API frameworks and libraries. Some works attempt to
provide relevant suggestions on using third-party libraries [39,
43, 44]. Others center on delivering real-time recommenda-
tions during the development, such as giving parameter values
as suggestions in similar programming scenarios [45], or pro-
viding Android APIs and their usage patterns for assisting in
developers’ work [6, 8, 46].

Gu et al. [47] generate API usage sequences based on natu-
ral language query through a deep learning-based approach for
the purpose of code search. Likewise, Jiang et al. [48] pro-
pose an approach leveraging multi-aspect features to generate
code snippets as recommendations, such as text, topic, and the
number of lines, etc. There is a module in Icon2Code that uti-
lizes a simple short text to locate similar neighbors to facilitate
subsequent recommendations. We believe the aforementioned
approaches could supplement this module to enable Icon2Code
to achieve a higher performance.

Yuan et al. [13] initially concentrate on the demand of rec-
ommending event callbacks in Android application develop-
ment and submit an approach to support both functional APIs
and the event callbacks that need to be overridden. They ex-
tended this work by establishing a large Android-specific API
database indicating the associations among diverse functional-
ities and APIs [7]. What is different from their work to ours,
aside from the GUI component mapping, is that callbacks in
our work are the objects that need to be fulfilled, that is, are
playing the role of users in the recommendation system, rather
than items in theirs.

6.3. Collaborative filtering in software engineering
Collaborative filtering techniques are broadly employed in

software engineering to support many different recommenda-
tion systems. Thung et al. [49] integrate association rule min-
ing and user-based collaborative filtering and introduce a tech-
nique to recommend likely related libraries to aid developers in
exploit third-party libraries. Similarly, Yu et al. [29] propose
an approach that blends Latent Dirichlet Allocation (LDA) and
collaborative filtering to give suggestions about third-party li-
braries for mobile apps. He et al. [39] propose an approach that
leverages Matrix Factorization, a classic collaborative filtering
based prediction approach, for recommending useful third-party
libraries to developers. These are for general app code usage,
rather than for GUI event handler code implementation as in
our work.

In terms of applications at the code level, Nguyen et al. [25]
present a context-aware collaborative filtering based algorithm
to recommend Java method invocations. We focus on providing
much more targeted API and usage pattern recommendations
for callbacks related to specific GUI components.
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7. Summary

We have proposed a prototype tool Icon2Code to recom-
mend API calling code to assist Android app developers in im-
plementing the callback functions of iconic GUI components.
Icon2Code leverages icon image files and their alternative text
to locate similar icons that are closest to the active icon under
development. It then employs a collaborative filtering algorithm
with encoding matrix and rating algorithms to obtain an output
of recommended APIs to call in the event handler code, as well
as usage samples from existing apps. Our experimental results
using a new dataset of almost 50,000 icon event handler im-
plementations have demonstrated that Icon2Code is effective in
recommending such event handler code API usage for Android
developers.

8. Acknowledgments

The authors would like to thank the anonymous reviewers
who have provided insightful and constructive comments that
have led to substantial improvements in this manuscript. This
work was partly supported by the Australian Research Council
(ARC) under a Laureate Fellowship project FL190100035, a
Discovery Early Career Researcher Award (DECRA) project
DE200100016, and a Discovery project DP200100020.

References

[1] Amanda Short, Standing out from the crowd: Improving your mo-
bile app with competitive analysis, Smashing Magazine (2017).
URL: https://www.smashingmagazine.com/2017/12/
improving-mobile-app-competitive-analysis/, [On-
line; accessed 20-July-2020].

[2] H. Cai, Z. Zhang, L. Li, X. Fu, A large-scale study of application in-
compatibilities in android, in: The 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019), 2019.

[3] L. Li, T. F. Bissyandé, H. Wang, J. Klein, Cid: Automating the detec-
tion of api-related compatibility issues in android apps, in: The ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2018), 2018.

[4] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, Y. Le Traon, Static analysis of android apps: A systematic liter-
ature review, Information and Software Technology (2017).

[5] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, J. Klein, Automated testing
of android apps: A systematic literature review, IEEE Transactions on
Reliability (2018).

[6] T. T. Nguyen, H. V. Pham, P. M. Vu, T. T. Nguyen, Recommending
api usages for mobile apps with hidden markov model, in: 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), IEEE, 2015, pp. 795–800.

[7] W. Yuan, H. H. Nguyen, L. Jiang, Y. Chen, J. Zhao, H. Yu, Api recom-
mendation for event-driven android application development, Information
and Software Technology 107 (2019) 30–47.

[8] H. Niu, I. Keivanloo, Y. Zou, Api usage pattern recommendation for
software development, Journal of Systems and Software 129 (2017) 127–
139.

[9] M. M. Rahman, C. K. Roy, D. Lo, Rack: Automatic api recommendation
using crowdsourced knowledge, in: 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, IEEE, 2016, pp. 349–359.

[10] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei, Mapo: Mining and recom-
mending api usage patterns, in: European Conference on Object-Oriented
Programming, Springer, 2009, pp. 318–343.

[11] W. Yang, M. R. Prasad, T. Xie, A grey-box approach for automated gui-
model generation of mobile applications, in: International Conference on
Fundamental Approaches to Software Engineering, Springer, 2013, pp.
250–265.

[12] S. Gao, L. Liu, Y. Liu, H. Liu, Y. Wang, Api recommendation for the
development of android app features based on the knowledge mined from
app stores, Science of Computer Programming 202 (2021) 102556.

[13] W. Yuan, H. H. Nguyen, L. Jiang, Y. Chen, Libraryguru: Api recommen-
dation for android developers, in: Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, 2018,
pp. 364–365.

[14] C. Chen, T. Su, G. Meng, Z. Xing, Y. Liu, From ui design image to gui
skeleton: a neural machine translator to bootstrap mobile gui implemen-
tation, in: Proceedings of the 40th International Conference on Software
Engineering, 2018, pp. 665–676.

[15] D. D. Perez, W. Le, Generating predicate callback summaries for the
android framework, in: 2017 IEEE/ACM 4th International Conference on
Mobile Software Engineering and Systems (MOBILESoft), IEEE, 2017,
pp. 68–78.

[16] W. Song, X. Qian, J. Huang, Ehbdroid: Beyond gui testing for android
applications, in: 2017 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), IEEE, 2017, pp. 27–37.

[17] V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla,
A. Zeller, Detecting behavior anomalies in graphical user interfaces, in:
2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), IEEE, 2017, pp. 201–203.

[18] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Orb: An efficient alterna-
tive to sift or surf, in: 2011 International conference on computer vision,
Ieee, 2011, pp. 2564–2571.

[19] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, Locality-sensitive hash-
ing scheme based on p-stable distributions, in: Proceedings of the twen-
tieth annual symposium on Computational geometry, 2004, pp. 253–262.

[20] D. R. Kaeli, P. Mistry, D. Schaa, D. P. Zhang, Heterogeneous computing
with OpenCL 2.0, Morgan Kaufmann, 2015.

[21] E. S. Ristad, P. N. Yianilos, Learning string-edit distance, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 20 (1998) 522–532.

[22] V. I. Levenshtein, Binary codes capable of correcting deletions, inser-
tions, and reversals, in: Soviet physics doklady, volume 10, 1966, pp.
707–710.

[23] S. Sarkar, D. Das, P. Pakray, A. Gelbukh, Junitmz at semeval-2016 task 1:
Identifying semantic similarity using levenshtein ratio, in: Proceedings
of the 10th International Workshop on Semantic Evaluation (SemEval-
2016), 2016, pp. 702–705.

[24] J. B. Schafer, D. Frankowski, J. Herlocker, S. Sen, Collaborative filtering
recommender systems, in: The adaptive web, Springer, 2007, pp. 291–
324.

[25] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule,
M. Di Penta, Focus: A recommender system for mining api function calls
and usage patterns, in: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), IEEE, 2019, pp. 1050–1060.

[26] A. Rountev, D. Yan, Static reference analysis for gui objects in android
software, in: Proceedings of Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, 2014, pp. 143–153.

[27] S. Arzt, S. Rasthofer, E. Bodden, The soot-based toolchain for analyzing
android apps, in: 2017 IEEE/ACM 4th International Conference on Mo-
bile Software Engineering and Systems (MOBILESoft), IEEE, 2017, pp.
13–24.

[28] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein,
Y. Le Traon, Androzoo++: Collecting millions of android apps and their
metadata for the research community, arXiv preprint arXiv:1709.05281
(2017).

[29] H. Yu, X. Xia, X. Zhao, W. Qiu, Combining collaborative filtering and
topic modeling for more accurate android mobile app library recommen-
dation, in: Proceedings of the 9th Asia-Pacific Symposium on Internet-
ware, 2017, pp. 1–6.

[30] P. Lam, E. Bodden, O. Lhoták, L. Hendren, The soot framework for
java program analysis: a retrospective, in: Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), volume 15, 2011, p. 35.

[31] S. Yang, D. Yan, H. Wu, Y. Wang, A. Rountev, Static control-flow analy-
sis of user-driven callbacks in android applications, in: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 1,

13

https://www.smashingmagazine.com/2017/12/improving-mobile-app-competitive-analysis/
https://www.smashingmagazine.com/2017/12/improving-mobile-app-competitive-analysis/


IEEE, 2015, pp. 89–99.
[32] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, A. Roun-

tev, Static window transition graphs for android, Automated Software
Engineering 25 (2018) 833–873.

[33] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, P. McDaniel, Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps, Acm Sigplan
Notices 49 (2014) 259–269.

[34] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, P. McDaniel, Iccta: Detecting
inter-component privacy leaks in android apps, in: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 1,
IEEE, 2015, pp. 280–291.

[35] R. Coppola, M. Morisio, M. Torchiano, Evolution and fragilities in
scripted gui testing of android applications, in: Proceedings of the 3rd
International Workshop on User Interface Test Automation. ACM, 2017.

[36] X. Xiao, X. Wang, Z. Cao, H. Wang, P. Gao, Iconintent: automatic iden-
tification of sensitive ui widgets based on icon classification for android
apps, in: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), IEEE, 2019, pp. 257–268.

[37] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang,
K. Zhang, Understanding android obfuscation techniques: A large-scale
investigation in the wild, in: International Conference on Security and
Privacy in Communication Systems, Springer, 2018, pp. 172–192.

[38] B. Lika, K. Kolomvatsos, S. Hadjiefthymiades, Facing the cold start
problem in recommender systems, Expert Systems with Applications 41
(2014) 2065–2073.

[39] Q. He, B. Li, F. Chen, J. Grundy, X. Xia, Y. Yang, Diversified third-party
library prediction for mobile app development, IEEE Transactions on
Software Engineering (2020).

[40] S. P. Reiss, Y. Miao, Q. Xin, Seeking the user interface, Automated
Software Engineering 25 (2018) 157–193.

[41] T. Beltramelli, pix2code: Generating code from a graphical user inter-

face screenshot, in: Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, 2018, pp. 1–6.

[42] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu, et al., Deepintent: Deep icon-behavior learning for de-
tecting intention-behavior discrepancy in mobile apps, in: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 2421–2436.

[43] Z. Ma, H. Wang, Y. Guo, X. Chen, Libradar: fast and accurate detec-
tion of third-party libraries in android apps, in: Proceedings of the 38th
international conference on software engineering companion, 2016, pp.
653–656.

[44] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, W. Huo, Libd:
scalable and precise third-party library detection in android markets, in:
2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), IEEE, 2017, pp. 335–346.

[45] L. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, Parameter values of android
apis: A preliminary study on 100,000 apps, in: 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, IEEE, 2016, pp. 584–588.

[46] T. T. Nguyen, H. V. Pham, P. M. Vu, T. T. Nguyen, Learning api usages
from bytecode: a statistical approach, in: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE), IEEE, 2016, pp.
416–427.

[47] X. Gu, H. Zhang, D. Zhang, S. Kim, Deep api learning, in: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 631–642.

[48] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, X. Luo, Rosf:
Leveraging information retrieval and supervised learning for recommend-
ing code snippets, IEEE Transactions on Services Computing 12 (2016)
34–46.

[49] F. Thung, D. Lo, J. Lawall, Automated library recommendation, in: 2013
20th Working Conference on Reverse Engineering (WCRE), IEEE, 2013,
pp. 182–191.

14


	Introduction
	Motivation
	Icon2Code
	DCM: Database Construction Module
	Preprocessing.
	Code Analysis.
	Call Graph Construction.
	Database Construction.

	SCM: Similarity Calculation Module
	ARM: API Recommendation Module

	Evaluation
	Dataset
	Evaluation Metrics
	RQ1: Performance of Icon2Code
	RQ2: Impact of the selected number of similar icons
	RQ3: Impact of similarity calculation methods
	RQ4: Performance on different groups of training icons

	Discussion
	Threats to validity
	Limitations and Future Work

	Related work
	GUI analysis in Android
	Recommendation in Android Development
	Collaborative filtering in software engineering

	Summary
	Acknowledgments

